Home About us Articles Multimedia Search Instructions Login 
IF 2017: 1.596 (® Clarivate Analytics)
Total Cites: 7606
Q2 in Medicine, General & Internal
Follow Us
Follow Us
  • Users Online: 236
  • Home
  • Print this page
  • Email this page

 Table of Contents  
ORIGINAL ARTICLE
Year : 2018  |  Volume : 131  |  Issue : 6  |  Page : 657-664

Blood Pressure Variability and Outcome in Patients with Acute Nonlobar Intracerebral Hemorrhage following Intensive Antihypertensive Treatment


1 Department of Neurosurgery; Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 200-704, Korea
2 Department of Neurology, Hallym University College of Medicine, Chuncheon 200-704, Korea
3 Department of Emergency Medicine, Seoul Emergency Operations Center, Seoul, Korea

Date of Submission01-Sep-2017
Date of Web Publication9-Mar-2018

Correspondence Address:
Dr. Chulho Kim
Department of Neurology, Hallym University College of Medicine, Gyo-dong, Chuncheon-si, Gangwon-do 200-704
Korea
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0366-6999.226886

Rights and Permissions
  Abstract 


Background: Blood pressure (BP) variability has been associated with stroke risk. We elucidated the association between systolic BP (SBP) variation and outcomes in patients with nonlobar intracerebral hemorrhage (ICH) following intensive antihypertensive treatment upfront.
Methods: We screened consecutive patients with spontaneous ICH who underwent intensive antihypertensive treatments targeting BP <140 mmHg between 2008 and 2016. SBPs were monitored hourly during the acute period (≤7 days after symptom onset) in the intensive care unit. SBP variability was determined in terms of range, standard deviation (SD), coefficient of variation (CoV), and mean absolute change (MAC). The primary outcomes included hematoma growth and poor clinical outcome at 3 months (modified Rankin Scale [mRS] score ≥3. The secondary outcome was an ordinal shift in mRS at 3 months.
Results: A total of 104 individuals (mean age, 63.0 ± 13.5 years; male, 57.7%) were included in this study. In multivariable model, MAC (adjusted odds ratio [OR], 1.11; 95% confidence interval [CI]: 1.02–1.21; P = 0.012) rather than the range of SD or CoV, was significantly associated with hematoma growth even after adjusting for mean SBP level. Sixty-eight out of 104 patients (65.4%) had a poor clinical outcome at 3 months. SD and CoV of SBP were significantly associated with a 3-month poor clinical outcome even after adjusting for mean SBP. In addition, in multivariable ordinal logistic models, the MAC of SBP was significantly associated with higher shift of mRS at 3 months (adjusted OR, 1.08; 95% CI: 1.02–1.15; P = 0.008).
Conclusions: The MAC of SBP is associated with hematoma growth, and SD and COV are correlated with 3-month poor outcome in patients with supratentorial nonlobar ICH. Therefore, sustained SBP control, with a reduction in SBP variability is essential to reinforce the beneficial effect of intensive antihypertensive treatment.

Keywords: Blood Pressure; Hemorrhage; Outcome


How to cite this article:
Jeon JP, Kim C, Kim SE. Blood Pressure Variability and Outcome in Patients with Acute Nonlobar Intracerebral Hemorrhage following Intensive Antihypertensive Treatment. Chin Med J 2018;131:657-64

How to cite this URL:
Jeon JP, Kim C, Kim SE. Blood Pressure Variability and Outcome in Patients with Acute Nonlobar Intracerebral Hemorrhage following Intensive Antihypertensive Treatment. Chin Med J [serial online] 2018 [cited 2018 Dec 13];131:657-64. Available from: http://www.cmj.org/text.asp?2018/131/6/657/226886




  Introduction Top


Primary intracerebral hemorrhage (ICH) is associated with higher mortality and disability than ischemic stroke. More than one-third of all patients experienced mortality, and 68% of survivors showed poor clinical outcome at 1-month follow-up.[1] High blood pressure (BP) is a well-known risk factor for hematoma growth [2] and poor clinical outcome.[3] Because acute hypertensive response (defined as systolic BP [SBP] over 140 mmHg or diastolic BP over 90 mmHg in two recorded BP measurements taken 5 min apart within 24 h after symptom onset) has been reported up to 75% after ICH development,[4] intensive antihypertensive upfront is widely used. Most physicians tend to treat high BP based on systolic or mean BP. Sakamoto et al.[5] reported that mean SBP after standardized antihypertensive treatment was associated with poor outcomes (odds ratio [OR]: 2.03; 95% confidence interval [CI]: 1.24–3.33) and hematoma growth (OR: 1.86; 95% CI: 1.09–3.16). Nevertheless, an absolute parameter such as systolic or mean BP alone did not contribute to the beneficial effect of antihypertensive medication in terms of reduction of cardiovascular events.[3] Webb et al.[6] reported that stroke risk was also determined by variation in SBP as well as mean BP. Accordingly, interindividual variation of BP should be considered to estimate risk reduction of stroke.

Any study of the factors associated with clinical outcomes after ICH development should consider ICH location. The main causes of primary ICH include arterial hypertension and cerebral amyloid angiopathy (CAA).[7] Although hypertensive ICH has been reported to account for nearly 90% of the spontaneous ICH,[8] distinguishing hypertensive ICH from CAA is difficult based on radiologic examination alone, without pathological confirmation. Nevertheless, previous studies showed that CAA was associated with lobar ICH, especially in elderly patients.[9] Patients with lobar ICH appear to exhibit greater degree of hemorrhage and extension to subarachnoid or subdural space than nonlobar ICH.[10] Samarasekera et al.[10] reported that lobar ICH exhibited lower 1-year fatality rate than nonlobar ICH, although lobar ICH showed a higher frequency of recurrence. In addition, nonlobar ICH was significantly related to hypertension.[11] Therefore, the significance of BP variation in outcomes of ICH patients should be based on hematoma location. The aim of this study was to clarify the association between BP variability and outcomes in patients with nonlobar ICH following upfront and intensive antihypertensive treatment.


  Methods Top


Ethical approval

This study was approved by the Chuncheon Sacred Heart Hospital Institutional Review Boards/Ethics Committee (IRB No. 2016_57), and the patient consent was waived due to retrospective nature of the study.

Clinical reviews were conducted with ICH patients identified in a prospective ICH database between January 2008 and December 2016 were done. The inclusion criteria of the study were: (1) adult patients aged 18 years and above presenting with spontaneous ICH; (2) high SBP, 150–220 mmHg at admission; (3) absence of contraindications to antihypertensive medication; (4) time from symptom onset to diagnosis ≤6 h; (5) supratentorial hematoma volume <60 ml;[12] and (6) patients who underwent intensive antihypertensive treatments targeting BP <140 mmHg within 4 h after diagnosis.[3],[12] The exclusion criteria were as follows: (1) patients who had structural causes of ICH such as aneurysms, arteriovenous malformation, moyamoya disease, or dissections; (2) patients who did not have 3-month clinical outcome; (3) patients who underwent early surgery for hematoma evacuation to control intracranial pressure; and (4) lobar ICH of the frontal, parietal, temporal, and occipital cortex [Figure 1]. Continuous intravenous antihypertensive medication using nicardipine or labetalol was administered for 24 h. Oral BP-lowering medications were added after cardiology consultation. BP was monitored every 15 min during the first 2 h and hourly until the follow-up computed tomography (CT) scan and during the entire admission period in the intensive care units. The follow-up CT scan was performed immediately following a change in the patient's neurological status, and under stable conditions, it was repeated at 24–48 h from the initial scan. Hematoma growth was defined as hematoma expansion >33% on follow-up (CT).[5] Magnetic resonance imaging was used to assess underlying vascular abnormalities. Hematoma volume was measure by the ABC/2 method using DicomViewer software (OsiriX imaging software; http://www.osirix-viewer.com/) (A, greatest diameter of the hemorrhage; B, largest perpendicular diameter to A; and C, sum of the thickness).[13]
Figure 1: Flow diagram of the study. ICH: Intracerebral hemorrhage; SAH: Subarachnoid hemorrhage; mRS: Modified rankin scale.

Click here to view


The primary outcomes were hematoma growth and poor clinical outcome at 3 months (defined as modified Rankin Scale [mRS] score ≥cOR The secondary outcome was an ordinal shift in mRS at 3 months.[3] Medical records including gender, age, hypertension, diabetes mellitus, coronary artery disease, chronic kidney disease, smoking, history of antithrombotic use, onset to diagnosis and treatment time, initial ICH volume, and laboratory results were reviewed. BP variability in the acute period (<7 days after diagnosis)[3] included range, standard deviation (SD), coefficient of variation (CoV), and mean absolute change (MAC).

Statistical analysis

The baseline characteristics of the participants were presented with mean ± standard deviation (SD) or median (interquartile range) for continuous variable and number (proportion) for categorical variables as appropriate. We performed Spearman's correlation test to assess the association between BP parameters including variability index (range, SD, CoV, and MAC), hematoma growth, and crude 3-month mRS. We used multivariable binary logistic regression analysis to evaluate the effect of BP parameters on hematoma expansion or poor clinical outcome at 3 months. In addition, we used multivariable ordinal logistic regression analysis to evaluate the effect of BP parameters on 3-month mRS scores. All mRS scores were subgrouped into 0–1, 2, 3, 4, and 5–6, and entered into ordinal logistic regression model. We interpreted the OR s for the ordinal logistic regression as a common OR of shift in the 3-month mRS score to the higher (worsening of the clinical outcome) in association with the BP parameters. We entered mean glucose and all variables that were statistically significant at P < 0.10 in univariable analyses. We considered two-sided P < 0.05 statistically significant in multivariable analysis, which was performed using IBM SPSS 23.0 (SPSS Inc., Chicago, IL, USA) and R version 3.3.1 (R Foundation for Statistical Computing).


  Results Top


Baseline characteristics

A total of 104 individuals (mean age, 63.0 ± 13.5 years; male, 57.7%) were included in this study. The mean onset-to-visit time was 100 (53–218) min. A time interval from initial CT to follow-up was 22.0 (13.0–41.5) h. More than half of the patients had a history of hypertension, and one-fifth of the patients had diabetes mellitus. BP measurement was performed 23 (15–40) times during the interval between initial and follow-up CT scan, and the median of mean SBP was 134 (128–138) mmHg. Range, SD, CoV, and MAC of the SBP are shown in [Table 1].
Table 1: Baseline characteristics of participating subjects with an acute nonlobar ICH (n = 104)

Click here to view


Hematoma growth

[Table 2] shows the correlations between SBP parameters and hematoma growth and crude 3-month mRS scores. Mean SBP was not correlated with hematoma growth. Hematoma growth was not correlated with range, SD, CoV, and MAC of the SBP in Spearman's correlation analyses. In univariable logistic regression analysis [Table 3], female, hematoma volume at admission, hypertension, and low-density lipoprotein (LDL) cholesterol level were associated with hematoma growth. In multivariable model, MAC (adjusted OR, 1.11; 95% CI: 1.02–1.21; P = 0.012) rather than SD or CoV of the SBP was significantly associated with hematoma growth even after adjusting for mean SBP level [Table 4]. In addition, hematoma volume at admission and history of hypertension were significant predictors for hematoma growth in all multivariable models.
Table 2: Correlation between SBP parameters, Δ ICH, and crude 3M mRS score

Click here to view
Table 3: Univariable logistic regression analysis of Δ ICH

Click here to view
Table 4: Predictors of Δ ICH in multivariable binary logistic regression analysis

Click here to view


Functional outcome

Sixty-eight out of 104 patients (65.4%) showed a poor clinical outcome (mRS 3–6) at 3 months. Age, onset-to-visit time, hematoma volume at admission, and LDL cholesterol level were correlated with poor clinical outcomes [Table 5]. Among BP variability indices, SD and CoV of the SBP (but not the ranges of MAC) were positively associated with poor clinical outcome at 3 months in univariable binary logistic regression analysis. Diabetes mellitus had a marginal association with poor clinical outcome (OR, 3.67; 95% CI: 1.00–13.50, P = 0.051); therefore, it was entered into multivariable model as a covariate. [Table 6] highlights the results of multivariable binary logistic regression analysis of predictors for poor clinical outcome at 3 months. Range and MAC of the SBP were not associated with 3-month poor clinical outcome. However, the SD and CoV of SBP were significantly correlated with poor clinical outcome even after adjusting for mean SBP. In addition, we performed a shift analysis of poor clinical outcome using ordinal logistic regression analysis, in which a shift to the higher score of mRS represented worsening clinical outcome at 3 months [Table 7]. In multivariable ordinal logistic models [Table 8], MAC of the SBP was significantly correlated with a higher shift of mRS (worsening clinical outcome) at 3 months (OR, 1.07; 95% CI: 1.01–1.14; P = 0.051). The SD or CoV of the SBP also showed a positive correlation with a higher shift of mRS, without statistical significance.
Table 5: Results of univariable binary logistic regression analysis for poor clinical outcome at 3 months

Click here to view
Table 6: Results of multivariable binary logistic regression analysis of predictor of poor clinical outcome at 3 months

Click here to view
Table 7: Results of univariable ordinal logistic regression analysis for higher shift of mRS score at 3 months

Click here to view
Table 8: Results of multivariable ordinal logistic regression analysis of higher shift of mRS score at 3 months

Click here to view



  Discussion Top


Associations between SBP and outcomes yielded conflicting results. In patients with acute ICH and initial SBP >180 mmHg, hematoma growth and poor outcome were correlated with mean SBP.[5] Conversely, the Antihypertensive Treatment of Acute Cerebral Hemorrhage 2[14] trial found no beneficial effect of intensive treatment (SBP 110–139 mmHg) compared with standard reduction (SBP 140–179 mmHg (relative risk, 1.04; 95% CI: 0.85–1.27) in ICH patients with an initial hematoma volume <60 cm 3. A recent meta-analysis conducted by Boulouis et al. reported that intensive BP lowering failed to decrease the mortality and morbidity compared with standard antihypertensive treatment (OR: 0.91; 95%CI: 0.80–1.02; P = 0.106).[15] A significant increase in ICH occurred in standard treatment (OR: 0.82; 95%CI: 0.68–1.00, P = 0.056). Despite differences in the definition of poor outcome (mRS score >3 or >4),[14] hematoma volume at admission and its location yielded conflicting results, and future stroke risks were also determined by BP variability.[3],[6] Therefore, the clinical significance of BP variability should be evaluated in ICH patients undergoing intensive antihypertensive treatment. Tanaka et al.[12] reported that SBP variability (SD and successive variation [SV]) during the first 24 h were associated with poor outcomes and early neurologic deterioration. In their study, SV variation of SBP increased the risk of poor outcomes (OR, 1.42; 95% CI: 1.04–1.97) and neurologic deterioration (OR, 2.37; 95% CI: 1.32–4.83). Manning et al.[3] investigated BP variables to predict outcomes of acute ICH patients in two phases of hyperacute (in the first 24 h after symptom onset) and acute (days 2–7 after symptom onset). Maximum SBP in the hyperacute phase and SD of SBP in the acute phase were significantly associated with poor clinical outcome at 3 months (mRS score ≥3). In contrast, Anderson et al.[16] did not find a significant improvement following intensive treatment (target SBP <140 mmHg within 1 h) or guideline-recommended treatment (target SBP <180 mm Hg) group (OR, 0.87; 95% CI: 0.75–1.01). However, the ordinal analysis showed a significantly lower mRS score in patients treated with intensive antihypertensive medication (OR, 0.87; 95% CI: 0.77–1.00). A post hoc analysis [17] of the two clinical trials, Continue or Stop Post-Stroke Antihypertensive Collaborative Study (COSSACS)[18] and Controlling Hypertension and hypotension immediately post stroke (CHHIPS)[19] showed no correlation between short-term BP variability (SD) and early outcome (2 weeks) after stroke onset (COSSACS, OR: 0.98, 95% CI: 0.78–1.23; CHHIPS, OR: 0.97, 95% CI: 0.90–1.11). However, their results were mainly derived from ischemic stroke patients, with relatively delayed recruitment time after symptom onset (within 36 h in CHHIPS and 48 h in COSSACS study) and short-term follow-up clinical outcomes (2 weeks).[3]

In addition to the different characteristics of the enrolled patients, the guidelines for BP management, the frequency of BP measurement and choice of antihypertensive drugs also resulted in conflicting results in acute ICH patients. The second Intensive Blood Pressure Reduction in the Acute Cerebral Hemorrhage Trial (INTERACT2)[3] assessed the predictive value of BP variability in outcomes for ICH patients (within 6 h after symptom onset) targeting BP levels to lower than 140 mmHg. BP was measured five times during the first 24 h and twice daily until day 7 after ICH onset. The Stroke Acute Management with Urgent Risk Factor Assessment and Improvement studies [12] included patients within 3 h after symptom onset with initial SBP exceeding 180 mmHg. The SBP was lowered to 120–160 mmHg. In our study, SBP was maintained intensively to a target level of <140 mmHg. In addition, about 22 BP measurements were performed in 22 h of repeated CT scan intervals. Therefore, our study presents a more accurate assessment of BP variability in ICH patients. Among acute ICH patients who underwent intensive antihypertensive treatment, BP variability was positively associated with poor functional outcome at 3 months of follow-up. Therefore, the benefits of intensive treatment can be reinforced with sustained control of SBP, and reducing BP variability. Liu-DeRyke et al.[20] reported that nicardipine provided superior therapeutic response than labetalol in terms of BP maintenance and lesser BP variability than labetalol in patients presenting with acute stroke. More specifically, SD of SBP was 15.0 (11.8–17.0) in nicardipine group and 19.0 (13.8–22.9) in labetalol group (P = 0.006). By contrast, such a difference was not observed in another cohort.[21] Ortega-Gutierrez et al. showed that the median percentage of BP variability was not significantly different among patients with nicardipine, labetalol, or a combination of both.[21] Tachycardia alone was apparent in patients treated with a combination of nicardipine and labetalol together compared with those treated with nicardipine or labetalol (P < 0.001). Therefore, further studies are needed to focus on anti-hypertensive drug regiments and SBP variability, and its association with neurologic outcome in acute ICH patients.

ICH location was associated with clinical outcomes in ICH patients due to altered pathophysiology. In primary ICH, lobar ICH in elderly patients occurred more frequently associated with CAA than hypertensive small vessel disease.[22] Vascular structural changes such as basement membrane thickening and endothelial dysfunction in elderly patients increase susceptibility to hemodynamic stress.[23] Older age has been reported to be a risk factor for lobar ICH. According to Kremer et al.,[22] age was related to increased risk of lobar ICH (hazard ratio per 10 years 1.90; 95% CI: 1.17–3.10), but not nonlobar ICH.

Matsukawa et al.[24] reported that age above 70 years was related to lobar ICH (OR, 4.1; 95% CI: 2.1–8.2). Although baroreceptor reflex was affected by gender and age,[25] further studies investigating the relationship between baroreceptor sensitivity and ICH outcome according to type or location are required. Oral anticoagulation and male gender were significant risk factors for nonlobar ICH. Martini et al.[11] showed that hypertension increased the risk of nonlobar ICH (OR, 2.87; 95% CI: 2.13–3.86) but not lobar ICH. In addition, lobar ICH showed a higher recurrence rate compared with nonlobar ICH.[9] Compared with supratentorial ICH, infratentorial ICH resulted in poor outcome. Delcourt et al.[26] reported that infratentorial ICH increased the risk of death or major disability (OR, 3.04; 95% CI: 1.68–5.50). Accordingly, the significance of BP variability may be more accurately assessed according to ICH location (lobar vs. nonlobar ICH; supratentorial vs. infratentorial). Our study showed that MAC of SBP was associated with hematoma growth and SD, CV, or MAC were associated with poor clinical outcome in patients with supratentorial nonlobar ICH.

We suggest that BP variability in hematoma and poor functional outcome in patients with primary ICH may be attributed to the following factors. First, autonomic dysfunction such as baroreflex impairment and sympathetic overactivity may be related to poor outcome in ICH patients with increased BP variability.[12] Sykora et al.[27] reported that acute ICH patients had significantly decreased baroreflex sensitivity and increased mean beat-to-beat BP variation, suggesting that baroreflex impairment resulted in secondary brain injury through brain edema or and cerebral hypoperfusion.[27] Second, enhanced activity of sympathetic nervous system also triggered brain injury through increased inflammatory responses, headache-induced psychological stress, and blood–brain barrier permeability.[12],[28],[29] Third, lenticulostriate or thalamoperforating arteries are the most common sites of ICH development in the brain due to lack of capillaries, and therefore, susceptible to direct variation in systemic BP.[30] The additional disruption of ICH-induced blood–brain barrier may further enhance the effect of BP fluctuation on hematoma growth or clinical outcome. However, the impact of BP lowering on hematoma growth or clinical outcome in patients with spontaneous ICH was not identified, underscoring the need for prospective trials using standard BP parameters in clinically identical populations.

Nevertheless, the study limitations relate to concerns of possible selection bias, based on a retrospective design. Second, we could not generalize our results of BP variability and outcomes in all cases of ICH since patients with huge hematoma or delayed admission were excluded from our trials. Finally, retrospective observational studies failed to demonstrate a causal relationship between BP variability, hematoma growth, and poor clinical outcomes.

The investigation has a few strengths. First, we focused on supratentorial nonlobar ICH to reduce the innate risk due to hematoma location and different clinical characteristics in anterior and posterior circulation in ICH. Second, intensive antihypertensive treatment was maintained with hourly BP monitoring in the intensive care unit. Accordingly, the relationship between BP variability and outcome in patients who underwent antihypertensive treatment was better defined. Third, we analyzed dichotomizing ordinal outcome scales using binary logistic regression analysis as well as ordinal shift analysis of mRS, which represented a more sensitive method to identify differences in stroke outcome compared with dichotomization.[31] Fourth, we included diverse BP variability parameters such as range, SD, CoV, and MAC, which were associated with relatively similar impact on hematoma growth and poor functional outcomes.

In conclusion, BP variability, especially MAC of SBP was associated with hematoma growth, while SD and CoV correlated with poor functional outcome at 3 months in patients with supratentorial nonlobar ICH. Prospective trials of BP-lowering interventions monitored closely for BP parameters are needed to identify the precise mechanisms of BP variability and outcomes in patients with spontaneous ICH according to location (supratentorial vs. infratentorial) and type (lobar vs. nonlobar).

Financial support and sponsorship

This work was supported by a (HURF-2016-50), BioGreen 21 (PJ0131392018) of the Rural Development Administration, and National Research Foundation of Korea grant funded by the Ministry of Science, Information and Communication Technologies and Future Planning of the Korea Government (No. 2017M3A9E8033223).

Conflicts of interest

There are no conflicts of interest.



 
  References Top

1.
Barber M, Roditi G, Stott DJ, Langhorne P. Poor outcome in primary intracerebral haemorrhage: Results of a matched comparison. Postgrad Med J 2004;80:89-92. doi: 10.1136/pmj.2003.010967.  Back to cited text no. 1
[PUBMED]    
2.
Ohwaki K, Yano E, Nagashima H, Hirata M, Nakagomi T, Tamura A, et al. Blood pressure management in acute intracerebral hemorrhage: Relationship between elevated blood pressure and hematoma enlargement. Stroke 2004;35:1364-7. doi: 10.1161/01.STR.0000128795.38283.4b.  Back to cited text no. 2
    
3.
Manning L, Hirakawa Y, Arima H, Wang X, Chalmers J, Wang J, et al. Blood pressure variability and outcome after acute intracerebral haemorrhage: A post-hoc analysis of INTERACT2, a randomised controlled trial. Lancet Neurol 2014;13:364-73. doi: 10.1016/S1474-4422(14)70018-3.  Back to cited text no. 3
    
4.
Qureshi AI. Acute hypertensive response in patients with stroke: Pathophysiology and management. Circulation 2008;118:176-87. doi: 10.1161/CIRCULATIONAHA.107.723874.  Back to cited text no. 4
    
5.
Sakamoto Y, Koga M, Yamagami H, Okuda S, Okada Y, Kimura K, et al. Systolic blood pressure after intravenous antihypertensive treatment and clinical outcomes in hyperacute intracerebral hemorrhage: The stroke acute management with urgent risk-factor assessment and improvement-intracerebral hemorrhage study. Stroke 2013;44:1846-51. doi: 10.1161/STROKEAHA.113.002903.  Back to cited text no. 5
    
6.
Webb AJ, Fischer U, Mehta Z, Rothwell PM. Effects of antihypertensive-drug class on interindividual variation in blood pressure and risk of stroke: A systematic review and meta-analysis. Lancet 2010;375:906-15. doi: 10.1016/S0140-6736(10)60235-8.  Back to cited text no. 6
    
7.
Sahni R, Weinberger J. Management of intracerebral hemorrhage. Vasc Health Risk Manag 2007;3:701-9.  Back to cited text no. 7
    
8.
Mohr JP, Caplan LR, Melski JW, Goldstein RJ, Duncan GW, Kistler JP, et al. The harvard cooperative stroke registry: A prospective registry. Neurology 1978;28:754-62.  Back to cited text no. 8
    
9.
Poon MT, Fonville AF, Al-Shahi Salman R. Long-term prognosis after intracerebral haemorrhage: Systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2014;85:660-7. doi: 10.1136/jnnp-2013-306476.  Back to cited text no. 9
    
10.
Samarasekera N, Fonville A, Lerpiniere C, Farrall AJ, Wardlaw JM, White PM, et al. Influence of intracerebral hemorrhage location on incidence, characteristics, and outcome: Population-based study. Stroke 2015;46:361-8. doi: 10.1161/STROKEAHA.  Back to cited text no. 10
    
11.
Martini SR, Flaherty ML, Brown WM, Haverbusch M, Comeau ME, Sauerbeck LR, et al. Risk factors for intracerebral hemorrhage differ according to hemorrhage location. Neurology 2012;79:2275-82. doi: 10.1212/WNL.0b013e318276896f.  Back to cited text no. 11
    
12.
Tanaka E, Koga M, Kobayashi J, Kario K, Kamiyama K, Furui E, et al. Blood pressure variability on antihypertensive therapy in acute intracerebral hemorrhage: The stroke acute management with urgent risk-factor assessment and improvement-intracerebral hemorrhage study. Stroke 2014;45:2275-9. doi: 10.1161/STROKEAHA.114.005420.  Back to cited text no. 12
    
13.
Maeda AK, Aguiar LR, Martins C, Bichinho GL, Gariba MA. Hematoma volumes of spontaneous intracerebral hemorrhage: The ellipse (ABC/2) method yielded volumes smaller than those measured using the planimetric method. Arq Neuropsiquiatr 2013;71:540-4. doi: 10.1590/0004-282X20130084.  Back to cited text no. 13
    
14.
Qureshi AI, Palesch YY, Barsan WG, Hanley DF, Hsu CY, Martin RL, et al. Intensive blood-pressure lowering in patients with acute cerebral hemorrhage. N Engl J Med 2016;375:1033-43. doi: 10.1056/NEJMoa1603460.  Back to cited text no. 14
    
15.
Boulouis G, Morotti A, Goldstein JN, Charidimou A. Intensive blood pressure lowering in patients with acute intracerebral haemorrhage: Clinical outcomes and haemorrhage expansion. Systematic review and meta-analysis of randomised trials. J Neurol Neurosurg Psychiatry 2017;88:339-45. doi: 10.1136/jnnp-2016-315346.  Back to cited text no. 15
    
16.
Anderson CS, Heeley E, Huang Y, Wang J, Stapf C, Delcourt C, et al. Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage. N Engl J Med 2013;368:2355-65. doi: 10.1056/NEJMoa1214609.  Back to cited text no. 16
    
17.
Manning LS, Mistri AK, Potter J, Rothwell PM, Robinson TG. Short-term blood pressure variability in acute stroke: Post hoc analysis of the controlling hypertension and hypotension immediately post stroke and continue or stop poststroke antihypertensives collaborative study trials. Stroke 2015;46:1518-24. doi: 10.1161/STROKEAHA.115.009078.  Back to cited text no. 17
    
18.
Robinson TG, Potter JF, Ford GA, Bulpitt CJ, Chernova J, Jagger C, et al. Effects of antihypertensive treatment after acute stroke in the continue or stop post-stroke antihypertensives collaborative study (COSSACS): A prospective, randomised, open, blinded-endpoint trial. Lancet Neurol 2010;9:767-75. doi: 10.1016/S1474-4422(10)70163-0.  Back to cited text no. 18
    
19.
Potter JF, Robinson TG, Ford GA, Mistri A, James M, Chernova J, et al. Controlling hypertension and hypotension immediately post-stroke (CHHIPS): A randomised, placebo-controlled, double-blind pilot trial. Lancet Neurol 2009;8:48-56. doi: 10.1016/S1474-4422(08)70263-1.  Back to cited text no. 19
    
20.
Liu-DeRyke X, Levy PD, Parker D Jr., Coplin W, Rhoney DH. A prospective evaluation of labetalol versus nicardipine for blood pressure management in patients with acute stroke. Neurocrit Care 2013;19:41-7. doi: 10.1007/s12028-013-9863-9.  Back to cited text no. 20
    
21.
Ortega-Gutierrez S, Thomas J, Reccius A, Agarwal S, Lantigua H, Li M, et al. Effectiveness and safety of nicardipine and labetalol infusion for blood pressure management in patients with intracerebral and subarachnoid hemorrhage. Neurocrit Care 2013;18:13-9. doi: 10.1007/s12028-012-9782-1.  Back to cited text no. 21
    
22.
Kremer PH, Jolink WM, Kappelle LJ, Algra A, Klijn CJ; SMART and ESPRIT Study Groups, et al. Risk factors for lobar and non-lobar intracerebral hemorrhage in patients with vascular disease. PLoS One 2015;10:e0142338. doi: 10.1371/journal.pone.0142338.  Back to cited text no. 22
    
23.
Camacho E, LoPresti MA, Bruce S, Lin D, Abraham M, Appelboom G, et al. The role of age in intracerebral hemorrhages. J Clin Neurosci 2015;22:1867-70. doi: 10.1016/j.jocn.2015.04.020.  Back to cited text no. 23
    
24.
Matsukawa H, Shinoda M, Fujii M, Takahashi O, Yamamoto D, Murakata A, et al. Factors associated with lobar vs. Non-lobar intracerebral hemorrhage. Acta Neurol Scand 2012;126:116-21. doi: 10.1111/j.1600-0404.2011.01615.x.  Back to cited text no. 24
    
25.
Peckerman A, Hurwitz BE, Nagel JH, Leitten C, Agatston AS, Schneiderman N, et al. Effects of gender and age on the cardiac baroreceptor reflex in hypertension. Clin Exp Hypertens 2001;23:645-56. doi: 10.1081/CEH-100107394.  Back to cited text no. 25
    
26.
Delcourt C, Sato S, Zhang S, Sandset EC, Zheng D, Chen X, et al. Intracerebral hemorrhage location and outcome among INTERACT2 participants. Neurology 2017;88:1408-14. doi: 10.1212/WNL.0000000000003771.  Back to cited text no. 26
    
27.
Sykora M, Diedler J, Rupp A, Turcani P, Rocco A, Steiner T, et al. Impaired baroreflex sensitivity predicts outcome of acute intracerebral hemorrhage. Crit Care Med 2008;36:3074-9. doi: 10.1097/CCM.0b013e31818b306d.  Back to cited text no. 27
    
28.
Ay H, Arsava EM, Vangel M, Oner B, Zhu M, Wu O, et al. Interexaminer difference in infarct volume measurements on MRI: A source of variance in stroke research. Stroke 2008;39:1171-6. doi: 10.1161/STROKEAHA.107.502104.  Back to cited text no. 28
    
29.
Carlberg B, Asplund K, Hägg E. Factors influencing admission blood pressure levels in patients with acute stroke. Stroke 1991;22:527-30. doi: 10.1161/01.STR.22.4.527.  Back to cited text no. 29
    
30.
Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, Hanley DF, et al. Spontaneous intracerebral hemorrhage. N Engl J Med 2001;344:1450-60. doi: 10.1056/NEJM200105103441907.  Back to cited text no. 30
    
31.
Saver JL, Gornbein J. Treatment effects for which shift or binary analyses are advantageous in acute stroke trials. Neurology 2009;72:1310-5. doi: 10.1212/01.wnl.0000341308.73506.b7.  Back to cited text no. 31
    


    Figures

  [Figure 1]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4], [Table 5], [Table 6], [Table 7], [Table 8]


This article has been cited by
1 Interventions affecting blood pressure variability and outcomes after intubating patients with spontaneous intracranial hemorrhage
Gurshawn Tuteja,Angad Uppal,Jonathan Strong,Tina Nguyen,Kanisha Pope,Ryne Jenkins,Heba Al Rehb,David Gatz,Wan-Tsu Chang,Quincy K. Tran
The American Journal of Emergency Medicine. 2018;
[Pubmed] | [DOI]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
Methods
Results
Discussion
References
Article Figures
Article Tables

 Article Access Statistics
    Viewed587    
    Printed5    
    Emailed0    
    PDF Downloaded115    
    Comments [Add]    
    Cited by others 1    

Recommend this journal




京ICP备05052599号