Home About us Editorial board Ahead of print Current issue Search Archives Instructions Contacts Login 
5 years IF: 1.036 (® Thomson Reuters)
IF 2016: 1.064 (® Thomson Reuters)
Total Cites: 7140
Follow Us
Follow Us
  • Users Online: 1349
  • Home
  • Print this page
  • Email this page
Year : 2017  |  Volume : 130  |  Issue : 6  |  Page : 703-709

Clinical Auditory Phenotypes Associated with GATA3 Gene Mutations in Familial Hypoparathyroidism-deafness-renal Dysplasia Syndrome

1 Department of Otolaryngology Head and Neck Surgery, Institute of Otolaryngology, Chinese People's Liberation Army General Hospital, Beijing 100853; Department of Clinical Medicine, School of Medicine, Nankai University, Tianjin 300071, China
2 Beijing Genomics Institute, Shenzhen, Guangdong 518083, China
3 Department of Otolaryngology Head and Neck Surgery, Institute of Otolaryngology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
4 Beijing Genomics Institute, Shenzhen, Guangdong 518083; James D. Watson Institute of Genome Sciences, Hangzhou, Zhejiang 310058, China

Correspondence Address:
Prof. Qiu-Ju Wang
Chinese People's Liberation Army Institute of Otolaryngology, Chinese People's Liberation Army General Hospital, 28 Fuxing Road, Beijing 100853
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0366-6999.201600

Rights and Permissions

Background: Hypoparathyroidism-deafness-renal dysplasia (HDR) syndrome is an autosomal dominant disorder primarily caused by haploinsufficiency of GATA binding protein 3 (GATA3) gene mutations, and hearing loss is the most frequent phenotypic feature. This study aimed at identifying the causative gene mutation for a three-generation Chinese family with HDR syndrome and analyzing auditory phenotypes in all familial HDR syndrome cases. Methods: Three affected family members underwent otologic examinations, biochemistry tests, and other clinical evaluations. Targeted genes capture combining next-generation sequencing was performed within the family. Sanger sequencing was used to confirm the causative mutation. The auditory phenotypes of all reported familial HDR syndrome cases analyzed were provided. Results: In Chinese family 7121, a heterozygous nonsense mutation c.826C>T (p.R276*) was identified in GATA3. All the three affected members suffered from sensorineural deafness and hypocalcemia; however, renal dysplasia only appeared in the youngest patient. Furthermore, an overview of thirty HDR syndrome families with corresponding GATA3 mutations revealed that hearing impairment occurred earlier in the younger generation in at least nine familial cases (30%) and two thirds of them were found to carry premature stop mutations. Conclusions: This study highlights the phenotypic heterogeneity of HDR and points to a possible genetic anticipation in patients with HDR, which needs to be further investigated.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded81    
    Comments [Add]    

Recommend this journal