Home About us Articles Multimedia Search Instructions Login 
5 years IF: 1.036 (® Thomson Reuters)
IF 2016: 1.064 (® Thomson Reuters)
Total Cites: 7140
Follow Us
Follow Us
  • Users Online: 1570
  • Home
  • Print this page
  • Email this page

 Table of Contents  
Year : 2017  |  Volume : 130  |  Issue : 4  |  Page : 392-397

Optimal Timing of Surgical Revascularization for Myocardial Infarction and Left Ventricular Dysfunction

1 Department of Cardiovascular Surgery, People′s Liberation Army General Hospital, Beijing 100853, China
2 Institute of Geriatrics, People's Liberation Army General Hospital, Beijing 100853, China

Date of Submission16-Aug-2016
Date of Web Publication9-Feb-2017

Correspondence Address:
Dr. Chang-Qing Gao
Department of Cardiovascular Surgery, People's Liberation Army General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0366-6999.199847

Rights and Permissions

Background: The optimal timing of surgical revascularization for patients presenting with ST-segment elevation myocardial infarction (STEMI) and impaired left ventricular function is not well established. This study aimed to examine the timing of surgical revascularization after STEMI in patients with ischemic heart disease and left ventricular dysfunction (LVD) by comparing early and late results.
Methods: From January 2003 to December 2013, there were 2276 patients undergoing isolated coronary artery bypass grafting (CABG) in our institution. Two hundred and sixty-four (223 male, 41 females) patients with a history of STEMI and LVD were divided into early revascularization (ER, <3 weeks), mid-term revascularization (MR, 3 weeks to 3 months), and late revascularization (LR, >3 months) groups according to the time interval from STEMI to CABG. Mortality and complication rates were compared among the groups by Fisher's exact test. Cox regression analyses were performed to examine the effect of the time interval of surgery on long-term survival.
Results: No significant differences in 30-day mortality, long-term survival, freedom from all-cause death, and rehospitalization for heart failure existed among the groups (P > 0.05). More patients in the ER group (12.90%) had low cardiac output syndrome than those in the MR (2.89%) and LR (3.05%) groups (P = 0.035). The mean follow-up times were 46.72 ± 30.65, 48.70 ± 32.74, and 43.75 ± 32.43 months, respectively (P = 0.716). Cox regression analyses showed a severe preoperative condition (odds ratio = 7.13, 95% confidence interval 2.05–24.74, P = 0.002) rather than the time interval of CABG (P > 0.05) after myocardial infarction was a risk factor of long-term survival.
Conclusions: Surgical revascularization for patients with STEMI and LVD can be performed at different times after STEMI with comparable operative mortality and long-term survival. However, ER (<3 weeks) has a higher incidence of postoperative low cardiac output syndrome. A severe preoperative condition rather than the time interval of CABG after STEMI is a risk factor of long-term survival.

Keywords: Ischemic Heart Disease; Left Ventricular Dysfunction; Myocardial Infarction; Surgical Revascularization

How to cite this article:
Wang R, Cheng N, Xiao CS, Wu Y, Sai XY, Gong ZY, Wang Y, Gao CQ. Optimal Timing of Surgical Revascularization for Myocardial Infarction and Left Ventricular Dysfunction. Chin Med J 2017;130:392-7

How to cite this URL:
Wang R, Cheng N, Xiao CS, Wu Y, Sai XY, Gong ZY, Wang Y, Gao CQ. Optimal Timing of Surgical Revascularization for Myocardial Infarction and Left Ventricular Dysfunction. Chin Med J [serial online] 2017 [cited 2018 Jun 25];130:392-7. Available from: http://www.cmj.org/text.asp?2017/130/4/392/199847

  Introduction Top

Heart failure has become a worldwide health issue, which seriously affects quality of life and life expectancy, and ischemic heart disease (IHD) is the leading cause of this lethal problem.[1],[2],[3] Acute ST-segment elevation myocardial infarction (STEMI) is the most critical illness among IHD with the worst prognostic results. Therefore, prompt and effective treatment of STEMI has always been one of the most challenging tasks in clinical practice.

With the wide use of thrombolytic therapy and primary percutaneous coronary intervention (PCI), surgical revascularization has become the second-line option for the treatment of STEMI.[4],[5] As prior studies have revealed, emergent coronary artery bypass grafting (CABG) was only performed as primary treatment in <5% of patients with acute myocardial infarction (AMI) and as rescue treatment in another 5% of patients after failed PCI.[6],[7],[8],[9] However, with the extensive application of coronary angiography, nearly 50% of patients with an acute coronary syndrome were identified as having severe triple-vessel disease, and a considerable number of patients were not anatomically suitable for emergent PCI treatment.[10],[11],[12] Thus, CABG plays an important role in the treatment of AMI.

Controversy has been existed for a long time regarding the optimal timing of surgical revascularization after AMI.[13],[14],[15] Although the latest American College of Cardiology (ACC)/American Heart Association guidelines for CABG surgery provided specific recommendations for surgical revascularization after STEMI, the optimal timing of CABG after AMI is still not well defined according to previous studies.[16],[17],[18],[19] Some studies recommended that an interval of at least 1 week between STEMI and surgical revascularization was relatively safe.[20] However, other studies have demonstrated that CABG can be performed at any time after STEMI. These studies also considered that patients' preoperative risk factors rather than the time interval played a more important role in early results.[21] For patients with left ventricular dysfunction (LVD) after STEMI, the issue about timing of surgical revascularization is even more complex because LVD is also an independent risk factor for operative mortality from CABG. At present, there is the dilemma that early revascularization (ER) may greatly enhance the surgical risk for this vulnerable patient group.[21] Late revascularization (LR) may further aggravate ischemic damage, causing hibernating or stunned myocardium and worsened left ventricular (LV) function.[17]

Therefore, we performed this retrospective study and analyzed the data of patients with LVD undergoing CABG at various times after STEMI. This study aimed to determine the optimal timing of surgical intervention and its effect on the short-term and long-term results of these patients.

  Methods Top


From January 2003 to December 2013, 2276 patients underwent isolated CABG in our institution, 264 of whom were included in our study. Informed consent for this study was obtained from each patient and their family member, following the Institutional Review Board approval of this study. The inclusion criteria were as follows: (a) patients had a history of STEMI as determined by the presence of clinical, electrocardiographic, and biochemical results; (b) preoperative echocardiography showed an left ventricular ejection fraction (LVEF) <50%; and (c) severe coronary stenosis was identified by coronary angiography and isolated CABG was recommended in accordance with the 2004 and 2011 ACC/American Heart Association guidelines for CABG surgery. Patients were excluded from the study if they fulfilled any of the following criteria: (a) patients were diagnosed with non-STEMI before surgery; (b) LVEF >50%; (c) severe IHD requiring surgical revascularization with poor operative tolerance; and (d) any concomitant cardiac operation in addition to CABG, such as mitral valve or aortic valve replacement, or LV aneurysm resection. Patients were divided into the ER group (n = 31), mid-term revascularization group (MR, n = 69), and LR group (n = 164). This classification was performed according to whether the patients underwent surgery <3 weeks, between 3 weeks and 3 months, or more than 3 months after STEMI, respectively.


Surgical revascularization was performed with or without the use of cardiopulmonary bypass depending on the patient's condition and the surgeons' preference. All of the surgeries were performed by three experienced cardiac surgeons (>100 CABG procedures per year). The internal thoracic artery (ITA) was routinely applied for left anterior descending artery revascularization, and saphenous vein grafts were anastomosed to other target vessels. When on-pump CABG was selected, histidine-tryptophan-ketoglutarate cardioplegia or blood cardioplegia was used for myocardial protection. For off-pump CABG, the revascularization strategy included performing an LAD graft by ITA, followed by saphenous vein grafts to other target vessels. Graft flow was routinely assessed by Doppler transit time flowmetry (Medistim Butterfly Flowmeter; Medistim, Oslo, Norway) before weaning off cardiopulmonary bypass and closing the chest.

Patients' demographics and European System for Cardiac Operative Risk Evaluation II (EuroSCORE II) risk factors were obtained preoperatively. Short- and long-term clinical outcomes of the three groups were compared. The primary end points of short-term clinical outcomes were 30-day mortality and severe complications. These complications included low cardiac output syndrome, malignant ventricular arrhythmias, renal failure, surgical reexploration for bleeding, perioperative myocardial infarction (MI), deep wound infection, and stroke. The long-term end points were all-cause mortality and rehospitalization for heart failure.

Statistical analysis

Continuous data are expressed as mean ± standard deviation (SD) and categorical variables as numbers and percentages. Comparisons of categorical variables between the groups were performed by the Chi-squared or Fisher's exact test. Comparisons of continuous variables between groups were analyzed by the unpaired Student's t- test. To identify the risk factors of long-term survival, baseline and imaging data as shown in [Table 1] and [Table 2] were included in multivariable analysis using the cox proportional hazards model. In this mode, the entry criterion was P = 0.05 and stay criterion was P = 0.1. A value of P < 0.05 was considered statistically significant. Data analysis was performed with SPSS software version 13.0 (SPSS Inc., Chicago, IL, USA).
Table  1: Baseline demographics in three groups

Click here to view
Table  2: Preoperative echocardiographic and angiographic characteristics of patients undergoing CABG after MI

Click here to view

  Results Top

The preoperative characteristics of the three groups are shown in [Table 1]. The EuroSCORE II risk factors (including female, dyspraxia, severe preoperative severe condition [e.g., cardiogenic shock, intra-aortic balloon pump support, etc.],[16] MI within 3 months, and emergent surgery [within 24 h][16]) were significantly higher in the ER group than those in MR and LR groups. The number of diseased vessels, incidence of left main disease, proportion of off-pump CABG, number of anastomoses, and incidence of perioperative intra-aortic balloon pump implantation were equally distributed in the three groups [Table 2] and [Table 3]. Six (2.3%) deaths occurred within 30 days after surgery, and there was no significant difference for 30-day mortality among the three groups. The incidence of low cardiac output syndrome was significantly higher in the ER group compared with the MR and LR groups. None of the other postoperative adverse events were significantly different among the groups [Table 3]. The mean follow-up time of the 264 patients was 45.36 ± 32.25 months, and twenty patients were lost during follow-up. The follow-up rates of ER, MR, and LR groups were 93.55%, 91.40%, and 92.68%, respectively, with no significant difference among the three groups. The overall 5-year survival rate was 82.8%. The Kaplan-Meier curves at 5 years showed no significant difference in survival rate among the three groups ([Figure 1], χ2 = 0.668, P = 0.716). Rates of freedom from all-cause death or rehospitalization for heart failure in ER, MR, and LR groups were 54.5%, 67.2%, and 62.3%, respectively, with no significant difference among the groups ([Figure 2], χ2 = 0.878, P = 0.645). Multivariate analyses showed that a severe preoperative condition rather than the time interval of CABG after MI was a risk factor of long-term survival [Table 4].
Table  3: Operative variables and operative outcome in patients after CABG

Click here to view
Figure  1: The Kaplan-Meier curves at 5  years showed no significant difference in survival rates among the three groups  (82.2%, 82.5%, and 79.7%; χ2 = 0.668, P = 0.716).

Click here to view
Figure  2: The Kaplan-Meier curves at 5  years showed no significant difference in freedom from all-cause death or readmission for heart failure among the three groups  (54.5%, 67.2%, and 62.3%; χ2  = 0.878, P = 0.645).

Click here to view
Table  4: Risk factors for late mortality after CABG in the study population

Click here to view

  Discussion Top

In this cohort of patients with STEMI and LVD undergoing surgical revascularization, we found that time interval from STEMI to surgery was not associated with a significantly increased risk of operative and long-term mortality. Nonetheless, there was a trend toward higher incidence of postoperative low cardiac output syndrome when CABG was performed within 3 weeks after STEMI. On long-term follow-up of over 5 years, preoperative severe condition rather than time interval of CABG after STEMI had a significant influence on mortality.

Our study showed that the incidence of low cardiac output syndrome in the ER group (within 3 weeks) was significantly higher than that in the other two groups. However, the operative mortality rate showed no significant difference among the three groups. This result showed the importance of meticulous perioperative management, which significantly decreased hospital mortality caused by low cardiac output syndrome and led to an insignificant difference in hospital mortality among the three groups. With regard to the long-term results, the present study showed no significant difference in long-term survival or freedom from all-cause death/rehospitalization for heart failure among the three groups. Moreover, cox regression multivariate analyses showed that a severe preoperative condition and emergent surgery (nearly reaching statistical significance) rather than the time interval of CABG after STEMI were risk factors of long-term survival. This finding is consistent with the findings of Ngaage et al. and Ladeira et al.[17],[18] These investigators prospectively analyzed 4090 patients who underwent CABG after MI and divided them into three groups based on the MI-to-CABG intervals of 0–30 days, 31–90 days, and >90 days. Their 5-year survival rates were 85.5%, 85.2%, and 89.3%, respectively, with no significant difference among the three groups. Their multivariate analysis also showed that the MI-to-CABG interval did not directly affect late mortality. However, comorbidities that were predominant in these groups of patients and the urgency of surgery were predictors of late death. The difference in the 5-year survival rate between our study and that of Ngaage et al. may be attributed to the proportion of patients with impaired LV function, which was 100% in our study and only 35% in their study.[17]

Weiss et al. suggested that CABG should be deferred for 3–7 days after AMI in nonurgent cases to reduce perioperative mortality and complications.[9] Another study by Assmann et al. also concluded that CABG performed <10 days after AMI was accompanied by significantly increased mortality.[10] However, Caceres and Weiman found that only seven of 18 retrospective studies reported an independent association between early CABG and an increased mortality rate, while no independent association was identified in another 11 reports.[11] Another finding of these investigations was that early surgical intervention was only associated with higher mortality in high-risk patients (age older than 65 years, ongoing ischemia before the operation, impaired LV function, and myocardial enzyme elevation). By contrast, there was no significant difference in mortality in low-risk patients at various times of surgical intervention. Therefore, the authors considered that the high mortality rate was related to the severity of the clinical conditions rather than the time interval before operation after AMI.[22]

LVD is an adverse outcome secondary to STEMI and is one of the major predictors of mortality for surgical revascularization. A subgroup study of the HORIZONS-AMI trial [23] reported that of 2648 patients with STEMI undergoing emergency PCI and evaluation of LV function, 23.3% had impaired LV function (LVEF ≤50%). Of these, 8.27% were severely impaired (LVEF ≤40%) and 14.94% were moderately impaired. This study showed that patients with severely impaired LV function who were treated by emergency PCI after STEMI had an increased rate of adverse outcomes compared to those with normal LV function. Assmann et al. and Ngaage et al. also reported that impaired LV function after MI was an independent predictor of mortality after CABG.[10],[17] To date, there has been only one study, with a small sample, that analyzed the optimal timing of surgical intervention for patients with impaired LV function after STEMI. This study suggested that the operation be deferred, as far as possible, to 1 month after STEMI. In addition, regarding risk stratification in European and American risk score systems, less than a 3-month time interval after AMI was identified as a risk factor for CABG.[24],[25] Based on these findings, we divided the patients in our study into three groups according to the time interval of surgical intervention after STEMI: ER group (<3 weeks), MR group (3 weeks to 3 months), and LR group (>3 months).

There are several distinct differences between our study and previous studies. First, all of the patients in our study had a definitive diagnosis of STEMI whereas previous studies did not clearly distinguish STEMI from non-STEMI.[26],[27] Second, all of our patients had impaired LV function (LVEF ≤50%) whereas most patients in previous studies had normal LV function.[28],[29] Third, short- and long-term outcomes of surgical revascularization, which was performed at different times, were observed in our study whereas only one long-term result was reported in a previous series.[30],[31]

Our study has some limitations inherent to single-center and retrospective studies, such as a small sample size, unmatched baseline characteristics, and sample inequality among groups. Thus, the insignificant difference of surgery mortality results between the three groups may also due to the small number of each group. Although a prospective, randomized, controlled trial of CABG is unlikely to be conducted in hemodynamically unstable patients, a retrospective, multicenter analysis of a large database is warranted to help draw reliable conclusions regarding the optimal timing of CABG after MI.

In conclusion, surgical revascularization for patients with STEMI and LVD can be performed at different times after STEMI with comparable operative mortality and long-term survival. However, early intervention (within 3 weeks after STEMI) has a high incidence of low cardiac output syndrome postoperatively. Thereafter, meticulous perioperative management is a prerequisite for implementation of early surgical revascularization. A severe preoperative condition rather than the time interval of CABG after STEMI is a risk factor of long-term survival.

Financial support and sponsorship


Conflicts of interest

There are no conflicts of interest.

  References Top

Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics-2015 update: A report from the American Heart Association. Circulation 2015;131:e29-322. doi: 10.1161/CIR.0000000000000152.  Back to cited text no. 1
Adams KF Jr., Fonarow GC, Emerman CL, LeJemtel TH, Costanzo MR, Abraham WT, et al. Characteristics and outcomes of patients hospitalized for heart failure in the United States: Rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J 2005;149:209-16. doi: 10.1016/j.ahj.2004.08.005.  Back to cited text no. 2
Gheorghiade M, Bonow RO. Chronic heart failure in the United States: A manifestation of coronary artery disease. Circulation 1998;97:282-9. doi: 10.1161/01.CIR.97.3.282.  Back to cited text no. 3
Hillis LD, Smith PK, Anderson JL, Bittl JA, Bridges CR, Byrne JG, et al.2011 ACCF/AHA Guideline for Coronary Artery Bypass Graft Surgery: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2011;124:e652-735. doi: 10.1161/CIR.0b013e31823c074e.  Back to cited text no. 4
Kolh P, Windecker S, Alfonso F, Collet JP, Cremer J, Falk V, et al.2014 ESC/EACTS Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur J Cardiothorac Surg 2014;46:517-92. doi: 10.1093/ejcts/ezu366.  Back to cited text no. 5
Filizcan U, Kurc E, Cetemen S, Soylu O, Aydogan H, Bayserke O, et al. Mortality predictors in ST-elevated myocardial infarction patients undergoing coronary artery bypass grafting. Angiology 2011;62:68-73. doi: 10.1177/0003319710369103.  Back to cited text no. 6
Lee DC, Oz MC, Weinberg AD, Lin SX, Ting W. Optimal timing of revascularization: Transmural versus nontransmural acute myocardial infarction. Ann Thorac Surg 2001;71:1197-202. doi: 10.1016/S0003-4975(01)02425-0.  Back to cited text no. 7
Thielmann M, Neuhäuser M, Marr A, Herold U, Kamler M, Massoudy P, et al. Predictors and outcomes of coronary artery bypass grafting in ST elevation myocardial infarction. Ann Thorac Surg 2007;84:17-24. doi: 10.1016/j.athoracsur.2007.03.086.  Back to cited text no. 8
Weiss ES, Chang DD, Joyce DL, Nwakanma LU, Yuh DD. Optimal timing of coronary artery bypass after acute myocardial infarction: A review of California discharge data. J Thorac Cardiovasc Surg 2008;135:503-11, 511.e1-3. doi: 10.1016/j.jtcvs.2007.10.042.  Back to cited text no. 9
Assmann A, Boeken U, Akhyari P, Lichtenberg A. Appropriate timing of coronary artery bypass grafting after acute myocardial infarction. Thorac Cardiovasc Surg 2012;60:446-51. doi: 10.1055/s-0032-1304542.  Back to cited text no. 10
Caceres M, Weiman DS. Optimal timing of coronary artery bypass grafting in acute myocardial infarction. Ann Thorac Surg 2013;95:365-72. doi: 10.1016/j.athoracsur.2012.07.018.  Back to cited text no. 11
Lee DC, Oz MC, Weinberg AD, Ting W. Appropriate timing of surgical intervention after transmural acute myocardial infarction. J Thorac Cardiovasc Surg 2003;125:115-9. doi: 10.1067/mtc.2003.75.  Back to cited text no. 12
Khaladj N, Bobylev D, Peterss S, Guenther S, Pichlmaier M, Bagaev E, et al. Immediate surgical coronary revascularisation in patients presenting with acute myocardial infarction. J Cardiothorac Surg 2013;8:167. doi: 10.1186/1749-8090-8-167.  Back to cited text no. 13
Khan AN, Sabbagh S, Ittaman S, Abrich V, Narayan A, Austin B, et al. Outcome of early revascularization surgery in patients with ST-elevation myocardial infarction. J Interv Cardiol 2015;28:14-23. doi: 10.1111/joic.12177.  Back to cited text no. 14
Deyell MW, Ghali WA, Ross DB, Zhang J, Hemmelgarn BR; Alberta Provincial Project for Outcome Assessment in Coronary Heart Disease (APPROACH) Investigators. Timing of nonemergent coronary artery bypass grafting and mortality after non-ST elevation acute coronary syndrome. Am Heart J 2010;159:490-6. doi: 10.1016/j.ahj.2010.01.002.  Back to cited text no. 15
Nashef SA, Roques F, Sharples LD, Nilsson J, Smith C, Goldstone AR, et al. EuroSCORE II. Eur J Cardiothorac Surg 2012;41:734-44. doi: 10.1093/ejcts/ezs043.  Back to cited text no. 16
Ngaage DL, Sogliani F, Tang A. Early and late prognostic implications of coronary artery bypass timing after myocardial infarction. Eur J Cardiothorac Surg 2013;43:549-54. doi: 10.1093/ejcts/ezs250.  Back to cited text no. 17
Ladeira RT, Jatene FB, Monteiro R, Zucato SP, Baracioli LM, Hueb AC, et al. Coronary artery bypass grafting in acute myocardial infarction. Analysis of preoperative predictors of mortality. Arq Bras Cardiol 2006;87:254-9. doi: 10.1590/S0066-782X2006001600005.  Back to cited text no. 18
Stone GW, Brodie BR, Griffin JJ, Grines L, Boura J, O'Neill WW, et al. Role of cardiac surgery in the hospital phase management of patients treated with primary angioplasty for acute myocardial infarction. Am J Cardiol 2000;85:1292-6. doi: 10.1016/S0002-9149(00)00758-X.  Back to cited text no. 19
Comas GM, Esrig BC, Oz MC. Surgery for myocardial salvage in acute myocardial infarction and acute coronary syndromes. Heart Fail Clin 2007;3:181-210. doi: 10.1016/j.hfc.2007.04.006.  Back to cited text no. 20
Voisine P, Mathieu P, Doyle D, Perron J, Baillot R, Raymond G, et al. Influence of time elapsed between myocardial infarction and coronary artery bypass grafting surgery on operative mortality. Eur J Cardiothorac Surg 2006;29:319-23. doi: 10.1016/j.ejcts.2005.12.021.  Back to cited text no. 21
Mohamad T, Bernal JM, Kondur A, Hari P, Nelson K, Niraj A, et al. Coronary revascularization strategy for ST elevation myocardial infarction with multivessel disease: Experience and results at 1-year follow-up. Am J Ther 2011;18:92-100. doi: 10.1097/MJT.0b013e3181b809ee.  Back to cited text no. 22
Ng VG, Lansky AJ, Meller S, Witzenbichler B, Guagliumi G, Peruga JZ, et al. The prognostic importance of left ventricular function in patients with ST-segment elevation myocardial infarction: The HORIZONS-AMI trial. Eur Heart J Acute Cardiovasc Care 2014;3:67-77. doi: 10.1177/2048872613507149.  Back to cited text no. 23
Hochberg MS, Parsonnet V, Gielchinsky I, Hussain SM, Fisch DA, Norman JC. Timing of coronary revascularization after acute myocardial infarction. Early and late results in patients revascularized within seven weeks. J Thorac Cardiovasc Surg 1984;88:914-21.  Back to cited text no. 24
Wang Y, Gao CQ, Shen YS, Wang G. Echocardiographic Follow-up of Robotic Mitral Valve Repair for Mitral Regurgitation due to Degenerative Disease. Chin Med J 2016;129:2199-203. doi: 10.4103/0366-6999.189909.  Back to cited text no. 25
[PUBMED]  [Full text]  
Parikh SV, de Lemos JA, Jessen ME, Brilakis ES, Ohman EM, Chen AY, et al. Timing of in-hospital coronary artery bypass graft surgery for non-ST-segment elevation myocardial infarction patients results from the National Cardiovascular Data Registry ACTION Registry-GWTG (Acute Coronary Treatment and Intervention Outcomes Network Registry-Get With The Guidelines). JACC Cardiovasc Interv 2010;3:419-27. doi: 10.1016/j.jcin.2010.01.012.  Back to cited text no. 26
Clark B, Baldwin JC, Paone R. Is early reperfusion a good thing? Optimal timing of CABG surgery postacute myocardial infarction. South Med J 2015;108:754-7. doi: 10.14423/SMJ.0000000000000387.  Back to cited text no. 27
Dudek D, Dziewierz A, Widimsky P, Bolognese L, Goldstein P, Hamm C, et al. Impact of prasugrel pretreatment and timing of coronary artery bypass grafting on clinical outcomes of patients with non-ST-segment elevation myocardial infarction: From the A comparison of prasugrel at PCI or time of diagnosis of non-ST-elevation myocardial infarction (ACCOAST) study. Am Heart J 2015;170:1025-32.e2. doi: 10.1016/j.ahj.2015.07.017.  Back to cited text no. 28
Perrier S, Kindo M, Gerelli S, Mazzucotelli JP. Coronary artery bypass grafting or percutaneous revascularization in acute myocardial infarction? Interact Cardiovasc Thorac Surg 2013;17:1015-9. doi: 10.1093/icvts/ivt381.  Back to cited text no. 29
Mejía OA, Lisboa LA, Tiveron MG, Santiago JA, Tineli RA, Dallan LA, et al. Coronary artery bypass grafting in acute myocardial infarction: Analysis of predictors of in-hospital mortality. Rev Bras Cir Cardiovasc 2012;27:66-74. doi: 10.5935/1678-9741.20120011.  Back to cited text no. 30
Edwards FH, Clark RE, Schwartz M. Coronary artery bypass grafting: The Society of Thoracic Surgeons National Database experience. Ann Thorac Surg 1994;57:12-9. doi: 10.1016/0003-4975(94)90358-1.  Back to cited text no. 31


  [Figure 1], [Figure 2]

  [Table 1], [Table 2], [Table 3], [Table 4]


Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

  In this article
Article Figures
Article Tables

 Article Access Statistics
    PDF Downloaded276    
    Comments [Add]    

Recommend this journal