Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
5 years IF: 1.017 (® Thomson Reuters)
IF 2015: 0.957 (® Thomson Reuters)
Total Cites: 6929
Follow Us
Follow Us
  • Users Online: 478
  • Home
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2017  |  Volume : 130  |  Issue : 2  |  Page : 165-170

Novel Mutation of Cleidocranial Dysplasia-related Frameshift Runt-related Transcription Factor 2 in a Sporadic Chinese Case


1 Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
2 Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China

Correspondence Address:
Jiu-Xiang Lin
Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0366-6999.197996

Rights and Permissions

Background: Cleidocranial dysplasia (CCD) is an autosomal dominant disease that affects the skeletal system. Common symptoms of CCD include hypoplasia or aplasia of the clavicles, delayed or even absent closure of the fontanels, midface hypoplasia, short stature, and delayed eruption of permanent and supernumerary teeth. Previous studies reported a connection between CCD and the haploinsufficiency of runt-related transcription factor 2 (RUNX2). Here, we report a sporadic Chinese case presenting typical symptoms of CCD. Methods: We made genetic testing on this sporadic Chinese case and identified a novel RUNX2 frameshift mutation: c.1111dupT. In situ immunofluorescence microscopy and osteocalcin promoter luciferase assay were performed to compare the functions of the RUNX2 mutation with those of wild-type RUNX2. Results: RUNX2 mutation was observed in the perinuclear region, cytoplasm, and nuclei. In contrast, wild-type RUNX2 was confined in the nuclei, which indicated that the subcellular compartmentalization of RUNX2 mutation was partially perturbed. The transactivation function on osteocalcin promoter of the RUNX2 mutation was obviously abrogated. Conclusions: We identified a sporadic CCD patient carrying a novel insertion/frameshift mutation of RUNX2. This finding expanded our understanding of CCD-related phenotypes.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed155    
    Printed4    
    Emailed0    
    PDF Downloaded34    
    Comments [Add]    

Recommend this journal