Home About us Articles Multimedia Search Instructions Login 
IF 2017: 1.596 (® Clarivate Analytics)
Total Cites: 7606
Q2 in Medicine, General & Internal
Follow Us
Follow Us
  • Users Online: 2318
  • Home
  • Print this page
  • Email this page
Year : 2017  |  Volume : 130  |  Issue : 20  |  Page : 2435-2440

Reference Intervals of Mitochondrial DNA Copy Number in Peripheral Blood for Chinese Minors and Adults

1 Department of Central Laboratory, Peking University First Hospital, Beijing 100034, China
2 Department of Clinical Laboratory, Peking University First Hospital, Beijing 100034, China

Correspondence Address:
Yi-Nan Ma
Department of Central Laboratory, Peking University First Hospital, Beijing 100034
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0366-6999.216395

Rights and Permissions

Background: Mitochondrial DNA (mtDNA) content measured by different techniques cannot be compared between studies, and age- and tissue-related control values are hardly available. In the present study, we aimed to establish the normal reference range of mtDNA copy number in the Chinese population. Methods: Two healthy cohorts of 200 Chinese minors (0.1–18.0 years) and 200 adults (18.0–88.0 years) were recruited. Then, they were further categorized into eight age groups. The absolute mtDNA copy number per cell was measured by a quantitative real-time polymerase chain reaction. We subsequently used this range to evaluate mtDNA content in four patients (0.5–4.0 years) with molecularly proven mitochondrial depletion syndromes (MDSs) and 83 cases of mitochondrial disease patients harboring the m.3243A>G mutation. Results: The reference range of mtDNA copy number in peripheral blood was 175–602 copies/cell (mean: 325 copies/cell) in minors and 164–500 copies/cell (mean: 287 copies/cell) in adults. There was a decreasing trend in mtDNA copy number in blood with increasing age, especially in 0–2-year-old and >50-year-old donors. The mean mtDNA copy number level among the mitochondrial disease patients with m.3243A>G mutation was significantly higher than that of healthy controls. The mtDNA content of POLG, DGUOK, TK2, and SUCLA2 genes in blood samples from MDS patients was reduced to 25%, 38%, 32%, and 24%, respectively. Conclusions: We primarily establish the reference intervals of mtDNA copy number, which might contribute to the clinical diagnosis and monitoring of mitochondrial disease.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded79    
    Comments [Add]    

Recommend this journal