Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
5 years IF: 1.036 (® Thomson Reuters)
IF 2016: 1.064 (® Thomson Reuters)
Total Cites: 7140
Follow Us
Follow Us
  • Users Online: 1759
  • Home
  • Print this page
  • Email this page

 Table of Contents  
ORIGINAL ARTICLE
Year : 2017  |  Volume : 130  |  Issue : 20  |  Page : 2416-2422

A Bayesian Stepwise Discriminant Model for Predicting Risk Factors of Preterm Premature Rupture of Membranes: A Case-control Study


1 Department of Microbiology and Immunology, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061; Deparment of Clinical Laboratory, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
2 Department of Medical Statistics, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
3 Deparment of Clinical Laboratory, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
4 Deparment of Clinical Laboratory, Xi'an Fourth Hospital, Xi'an, Shaanxi 710004, China
5 Deparment of Clinical Laboratory, Xi'an Gaoxin Hospital, Xi'an, Shaanxi 710075, China
6 Deparment of Clinical Laboratory, Chang'an Hospital, Xi'an, Shaanxi 710018, China
7 Department of Obstetrics and Gynecology, The Northwest Women and Children Hospital, Xi'an, Shaanxi 710061, China
8 Department of Microbiology and Immunology, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China

Date of Submission18-Jul-2017
Date of Web Publication10-Oct-2017

Correspondence Address:
Ji-Ru Xu
Department of Microbiology and Immunology, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0366-6999.216396

Rights and Permissions
  Abstract 


Background: Preterm premature rupture of membrane (PPROM) can lead to serious consequences such as intrauterine infection, prolapse of the umbilical cord, and neonatal respiratory distress syndrome. Genital infection is a very important risk which closely related with PPROM. The preliminary study only made qualitative research on genital infection, but there was no deep and clear judgment about the effects of pathogenic bacteria. This study was to analyze the association of infections with PPROM in pregnant women in Shaanxi, China, and to establish Bayesian stepwise discriminant analysis to predict the incidence of PPROM.
Methods: In training group, the 112 pregnant women with PPROM were enrolled in the case subgroup, and 108 normal pregnant women in the control subgroup using an unmatched case-control method. The sociodemographic characteristics of these participants were collected by face-to-face interviews. Vaginal excretions from each participant were sampled at 28–36+6 weeks of pregnancy using a sterile swab. DNA corresponding to Chlamydia trachomatis (CT), Ureaplasma urealyticum (UU), Candida albicans, group B streptococci (GBS), herpes simplex virus-1 (HSV-1), and HSV-2 were detected in each participant by real-time polymerase chain reaction. A model of Bayesian discriminant analysis was established and then verified by a multicenter validation group that included 500 participants in the case subgroup and 500 participants in the control subgroup from five different hospitals in the Shaanxi province, respectively.
Results: The sociological characteristics were not significantly different between the case and control subgroups in both training and validation groups (all P > 0.05). In training group, the infection rates of UU (11.6% vs. 3.7%), CT (17.0% vs. 5.6%), and GBS (22.3% vs. 6.5%) showed statistically different between the case and control subgroups (all P < 0.05), log-transformed quantification of UU, CT, GBS, and HSV-2 showed statistically different between the case and control subgroups (P < 0.05). All etiological agents were introduced into the Bayesian stepwise discriminant model showed that UU, CT, and GBS infections were the main contributors to PPROM, with coefficients of 0.441, 3.347, and 4.126, respectively. The accuracy rates of the Bayesian stepwise discriminant analysis between the case and control subgroup were 84.1% and 86.8% in the training and validation groups, respectively.
Conclusions: This study established a Bayesian stepwise discriminant model to predict the incidence of PPROM. The UU, CT, and GBS infections were discriminant factors for PPROM according to a Bayesian stepwise discriminant analysis. This model could provide a new method for the early predicting of PPROM in pregnant women.

Keywords: Bayesian Stepwise Discriminant Analysis; Etiological Factors; Infection; Preterm Premature Rupture of Membranes


How to cite this article:
Zhang LX, Sun Y, Zhao H, Zhu N, Sun XD, Jin X, Zou AM, Mi Y, Xu JR. A Bayesian Stepwise Discriminant Model for Predicting Risk Factors of Preterm Premature Rupture of Membranes: A Case-control Study. Chin Med J 2017;130:2416-22

How to cite this URL:
Zhang LX, Sun Y, Zhao H, Zhu N, Sun XD, Jin X, Zou AM, Mi Y, Xu JR. A Bayesian Stepwise Discriminant Model for Predicting Risk Factors of Preterm Premature Rupture of Membranes: A Case-control Study. Chin Med J [serial online] 2017 [cited 2017 Oct 21];130:2416-22. Available from: http://www.cmj.org/text.asp?2017/130/20/2416/216396




  Introduction Top


Preterm premature rupture of membrane (PPROM) is a common perinatal complication in pregnant women. It is responsible for one-third of all preterm births. The worldwide prevalence of PPROM ranges from 2% to 10%. PPROM might occur among women of the reproductive age group, especially during the period of pregnancy before 37 weeks of gestation. PPROM can cause maternal and fetal infection in pregnant women and their unborn children, a lower Apgar score, pulmonary hypoplasia, preterm delivery, and a low birth weight. However, the etiology of PPROM is unclear. PPROM may be caused by cervical incompetence, genital infections, and uterine abnormality. Some studies have shown that a history of PPROM, race, smoking status, poor nutrition, and genital infection are risk factors for PPROM. This study developed a model to explore genital infections that might activate inflammatory cells and then induce PPROM. The etiologies of genital infection include Chlamydia trachomatis (CT), Ureaplasma urealyticum (UU), Candida albicans, syphilis, Neisseria gonorrhoea (NG), group B streptococci (GBS), herpes simplex virus (HSV), and bacterial vaginosis (BV).[1],[2]

Genital infections might cause a release of cytokines and other inflammatory mediators that may weaken the membrane and cause PPROM. Studies by Chow and Blas showed that CT infection was associated with the occurrence of PPROM.[3],[4] Pregnant women with BV more readily developed PPROM than women without BV.[4],[5],[6] Candidiasis infection in pregnant women with PPROM is controversial, and a recent study showed that the treatments for candidiasis might reduce the incidence of PPROM.[7] Pregnant women who were infected with NG had a six-time higher risk of developing PPROM than women without NG infection. GBS might cause the activation of inflammatory cells in fetal membranes, which could lead to PPROM.[5],[8]

Although some studies have reported that PPROM was related to genital infections, the proportions of women with confirmed genital infections with or without PPROM in China are unknown.[3],[4],[5],[7],[8],[9] Studies of the relationship between genital infection and PPROM are still rare. This study aimed to determine the association between etiological infection and PPROM. Discriminant analysis is a multivariate statistical method that can distinguish newly acquired samples according to the quantitative characteristics of the existing observational sample. In this study, a Bayesian stepwise discriminant model was established, and a corresponding linear discriminant function was built. This model could predict and reduce the occurrence of PPROM.


  Methods Top


Ethical approval

The study was conducted in accordance with the Declaration of Helsinki and was approved by Institutional Review Board of Shaanxi Provincial People's Hospital. Informed written consent was obtained from all the participants before their enrolment in this study.

Study design and participants

Abnormal vaginal discharge was examined in each of the participants. The quantitative levels of CT, UU, NG, C. albicans, GBS, HSV-1, and HSV-2 were detected in each of the participants. Based on the etiological detection, a type of linear discriminant analysis was used to discriminate between normal pregnant women and those with PPROM. The accuracy of the Bayesian stepwise discriminant model was validated by both a training group (including 112 cases in case subgroup and 108 cases in control subgroup) and a multicenter validation group (including 500 cases in case subgroup and 500 cases in control subgroup). An unmatched case-control design was used in this study. Inclusion criteria for normal pregnant women were as follows: women with 28–36+6 weeks of gestation, no use of any antibiotics within 2 months, and no history of any chronic diseases (such as diabetes, cardiovascular disease, and hypertension). Inclusion criteria for the PPROM patients were as follows: pregnant women with 28–36+6 weeks of gestation, membrane rupture within 12 h, no use of any antibiotics within 2 months, and no history of any basic diseases (such as diabetes, cardiovascular disease, and hypertension). The PPROM is defined as the onset of amniotic fluid leakage from the vagina before the onset of uterine contractions at less than 37 weeks' gestational age.[8] The PPROM includes having a history of drainage of clear fluid that wets the perineum and runs along the thighs and legs as well as a sterile speculum examination showing fluid pooling in the posterior vaginal fornix or fluid freely flowing from the cervix. The laboratory definition of PPROM is positivity for insulin-like growth factor-binding protein 1 in the vaginal discharge.[9]

In the preliminary study, 112 pregnant women with PPROM and 108 normal pregnant women were randomly recruited from Department of Obstetrics and Gynecology, Shaanxi Provincial People's Hospital between June 2011 and May 2012. Bayesian stepwise discriminant analysis was used to analyze the etiological infections of CT, UU, C. albicans, GBS, HSV-1, and HSV-2. A multicenter validation group included 500 pregnant women with PPROM (case subgroup) and 500 normal pregnant women (control subgroup) from five different hospitals in the Shaanxi province between June 2012 and January 2013, respectively. These five hospitals were Northwest Women and Children Hospital, Xi'an Fourth Hospital, Xi'an Gaoxin Hospital, Chang'an Hospital, and Xianyang 215 Hospital in Shaanxi province.

Data and specimen collection

Face-to-face questionnaires were used to collect the sociodemographic characteristics (including age, gravidity, parity, marital status, and occupation) and gynecological histories (including obstetric history, past history of PPROM, and history of trauma to the cervix). A vaginal swab and a cervical swab were collected within 12 h of membrane rupture of PPROM cases, and the control group were collected at 28–36+6 weeks of gestation during routine examination.

Nucleic acid extraction

Each swab was suspended in the 1.5 ml of sterile saline (0.85%). Nucleic acid was extracted from the swab specimens using QIAamp MiniStool kit (QIAGEN, Hilden, Germany) following the manufacturer's instruction, and the DNA was eluted in the 45 μl of elution buffer.

Quantitation of etiological agents by real-time polymerase chain reaction

Real-time polymerase chain reaction (PCR; Triplex International Biosciences Co., LTD., China), following the manufacturer's instructions, was used to detect NG, UU, CT, GBS, and C. albicans in the vaginal swabs and HSV-1 and HSV-2 in the cervical swabs. The threshold of detection of the PCR was equal to or greater than 103 copies/ml.

Antibody against HIV and syphilis detection

All participants' serum was collected to detect antibody against HIV and syphilis using enzyme linked immunosorbent assay (ELISA) kits (Shanghai Kehua Bioengineering Co., Ltd., China).

Statistical analysis

The data were analyzed using SPSS version 19.0 software (SPSS Inc., Chicago, IL, USA). Data were considered to have a normal distribution if the P value given by the Shapiro-Wilk test was more than 0.05. If the test data set did not show a normal distribution, the data could be normalized by logarithmic transformation. The mean levels of infectious agents were compared using the Wilcoxon two-sample test method. The Chi-square test was used to analyze the differences between categorical data. The value of P < 0.05 was considered to be statistically significant.

Furthermore, the original data for the etiological factors of PPROM were log-transformed and then translated as discriminant functions. The translated data were analyzed by a forward selection method (sle = 0.1, sls = 0.1). Significant variables were identified by Bayesian stepwise discriminant analysis.

The quantitative levels of the etiological agents for each of the pregnant women were skewed. Hence, these data were converted into a log-normal distribution. Linear combinations of data were used to form discriminant functions for the separation of categories by minimization of the within-class and between-class ratios of the sum of squares. Bayesian stepwise discriminant analysis was used to distinguish normal pregnant women from those with PPROM. Forward stepwise analysis was used to select significant variables for the discriminant analysis. An obvious difference in the selected variables was observed when the translated variables were used.


  Results Top


Baseline characteristics of the training group

There were no significant differences in age, gravidity, parity, marital status, and occupation between the normal pregnant women (control subgroup) and those with PPROM (case subgroup) in the training group [all P > 0.05, [Table 1].
Table 1: Baseline characteristics of all participates in training group of this study

Click here to view


Univariate analysis of the etiologic agents in the training group

All participants were negative NG, HIV, and syphilis. In the training group, there were significant differences in the positive rates of abnormal vaginal discharge, UU, CT, and GBS between the normal pregnant women and those with PPROM [all P < 0.05; [Table 2]. To study the effects of different etiological agents on PPROM, the quantitative levels of UU, CT, HSV-2, and GBS were converted into log-normal distribution data. The quantitative levels of UU, CT, GBS, and HSV-2 showed significant differences between the normal pregnant women and those with PPROM [all P < 0.05; [Table 3]. However, the C. albicans and HSV-1 distributions were not significantly different between the normal pregnant women and those with PPROM [all P > 0.05, [Table 3]. Positive rates of each etiological agent were analyzed using Chi-square test. The translated data were analyzed using Wilcoxon two-sample test method. Then, the translated data were separately analyzed by a forward selection method, and significant variables were selected for the Bayesian stepwise discriminant analysis.
Table 2: Infectious status of training group in this study

Click here to view
Table 3: Distribution of etiological agents in training group of this study

Click here to view


Bayesian stepwise discriminant analysis

The Bayesian stepwise discriminant analysis is described in statistical language as follows: Assume g populations follow g multivariate normal distributions. Probability of misclassifying a subject in class i into class j, P(i\j); Loss due to misclassification, a(j\i). The Bayesian criterion: minimize the expected misclassification loss.

Classification function:



aj0, aj1., ajp(j = 1,2.... g): the parameters to be estimated; fji represents positively related to the probability of being in the jth population.

Bayesian stepwise discriminant analysis was used to establish a function using retrospective data, and then the individual observation indices were introduced into the equation, according to the results of the individual, to infer the type of a statistical method.

Two Bayesian function equations were established based on the discriminant coefficients. To investigate the contribution of the etiological factors, the tests of equality of three groups (UU, CT, and GBS) were statistically different (P < 0.05), then Bayesian discriminant method could be carried out. The significance test of the discriminant function are shown in [Table 4], Wilks' λ value was 0.530, Chi-square value was 137.535, so the discriminant result was proved to be effective. The classification function of Bayesian model was established as follows:
Table 4: Results of Bayesian stepwise discriminant function

Click here to view




X1 is the distribution of UU, X2 is the distribution of CT, and X3 is the distribution of GBS. f1 is the function for the PPROM group, and f2 is the function for the non-PPROM group.

The results of the Bayesian stepwise discriminant analysis showed that UU, CT, and GBS infections were key factors that could affect the occurrence of PPROM, with coefficients of 0.441, 3.347, and 4.126, respectively [Table 4]. According to the Bayesian stepwise discriminant model, associations were observed among UU, CT, and GBS infections, and PPROM. No associations were found among HSV-1, HSV-2, C. albicans, and PPROM. The Bayesian stepwise discriminant analysis was used to differentiate normal pregnant women from those with PPROM. The results showed that the accuracy of this method was 84.1%.

Validation of Bayesian stepwise discriminant analysis

All classification rules developed through Bayesian stepwise discriminant analysis should be prospectively validated before their use in clinical practice; therefore, we designed a prospective validation group. There were no significant differences in age, gravidity, parity, marital status, and occupation between the normal pregnant women (control subgroup, 500 cases) and those with PPROM (case subgroup, 500 cases) in the validation group [all P > 0.05, [Table 5]. The distributions of abnormal vaginal discharge, UU, CT, GBS, and C. albicans showed significant differences between two subgroups [all P < 0.05, [Table 6]. However, the distributions of HSV-2 and HSV-1 were not significantly different [all P > 0.05, [Table 6]. The log-transformed quantification of quantitative levels of UU, CT, HSV-2, and GBS showed statistical differences between the case and control groups but C. albicans did not show statistical difference [Table 7]. After the bias discriminant function cross-validation, the accuracy of this method was 86.8% to separate normal pregnant women and PPROM women in validation group [Table 8].
Table 5: Baseline characteristics of all participants in validation group of this study

Click here to view
Table 6: Infectious status of validation group in this study

Click here to view
Table 7: Distribution of etiological agents in validation group in this study

Click here to view
Table 8: Cross validation of training and validation groups in this study

Click here to view



  Discussion Top


The mechanisms of PPROM are unclear. The presence of infections may cause PPROM through the release of inflammatory cytokines and proteases.[6],[9] Indeed, genital infection has been identified as a risk factor for PPROM. Infection may impair the antimicrobial effect of the pregnant cervix, making it more susceptible to other microbes.[10],[11] This study investigated the associations between the selected genital infections (abnormal vaginal discharge, UU, CT, GBS, NG, C. albicans, HSV-1, HSV-2, HIV, and syphilis) and PPROM in Shaanxi province, China. The distributions of abnormal vaginal discharge, UU, CT and GBS were significantly different between normal pregnant women and those with PPROM. However, the distributions of C. albicans, HSV-1, HSV-2, were not significantly different between normal pregnant women and those with PPROM. The relationship between abnormal vaginal discharge and PPROM has been reported in other studies.[12],[13],[14] some studies have shown that C. albicans was protective against PPROM.[11],[15] Pregnant women with C. albicans were 73% less likely to develop PPROM than pregnant women without C. albicans. The possible reason for this finding might be that the amniotic fluid washes out the yeast cells, which could lead to negative results.[16],[17],[18] We found that the positive rate of C. albicans had no statistical difference between two subgroups in the training group, but had significant different between two subgroups in the validation group, and bias might be caused by the sample scale. Different outcomes were reported about the relationship between HSV-1 and HSV-2 with PPROM.[19] In the training group, the positive rate of HSV-2 showed no statistical difference, but the quantitative level of HSV-2 was significantly different between normal pregnant women and those with PPROM. This result might be caused by the use of different detection methods for HSV-1 and HSV-2 in pregnant women.[20],[21],[22]

Some studies have shown that infections with HIV, syphilis, and NG might be risk factors for PPROM in pregnant women.[8],[22] In this study, all participants were HIV, syphilis and NG negative, so these three pathogens were not included in the analysis of this study.

This study showed that CT infection was associated with PPROM. Some studies have shown that CT infection of pregnant women could cause release of inflammatory mediators that could be implicated in membrane rupture.[15],[23],[24] Some studies have shown that infection with GBS might release cytokines and other inflammatory modulators which could cause membrane rupture.[23],[25] This study found an association between PPROM and GBS. In this study, the prevalence rates of GBS in the women with PPROM ranged from 4.2% to 22.3%, similar with the results of other studies.[14],[26],[27]

The associations between etiological factors and PPROM are still unclear, and no tool is available to evaluate the association between quantitative levels of etiological agents and PPROM.[24],[28] In this study, we established a Bayesian stepwise discriminant model to identify normal pregnant women and those with PPROM. We found that CT, UU and GBS infections were associated with PPROM. Using this method, 84.1% and 86.8% of the pregnant women with PPROM could be distinguished from the normal pregnant women in the training and validation groups, respectively. However, the cause of PPROM is complicated, only main etiological agents were involved in this study, but noninfectious factors were not included, so some pregnant women with PPROM could not be distinguished from normal pregnant women using this Bayesian stepwise discriminant analysis.

In this study, a Bayesian stepwise discriminant model was established to predict the incidence of PPROM. The UU, CT, and GBS infections were discriminant factors for PPROM according to a Bayesian stepwise discriminant analysis. This model could provide a new method for the early predicting of PPROM in pregnant women to hopefully reduce the incidence of PPROM.

Financial support and sponsorship

This work was supported by grants from the Natural Science Found of Shaanxi Province (No. 2014JM2-8200 and No. 2010JM4031).

Conflicts of interest

There are no conflicts of interest.



 
  References Top

1.
Luo X, Pan J, Wang L, Wang P, Zhang M, Liu M, et al. Epigenetic regulation of lncRNA connects ubiquitin-proteasome system with infection-inflammation in preterm births and preterm premature rupture of membranes. BMC Pregnancy Childbirth 2015;15:35. doi: 10.1186/s12884-015-0460-0.  Back to cited text no. 1
    
2.
Ferrazzi E, Muggiasca ML, Fabbri E, Fontana P, Castoldi F, Lista G, et al. Assessment of fetal inflammatory syndrome by “classical” markers in the management of preterm labor: A possible lesson from metabolomics and system biology. J Matern Fetal Neonatal Med 2012;25:54-61. doi: 10.3109/14767058.2012.716984.  Back to cited text no. 2
    
3.
Chow JM, Kang MS, Samuel MC, Bolan G. Assessment of the association of Chlamydia trachomatis infection and adverse perinatal outcomes with the use of population-based chlamydia case report registries and birth records. Public Health Rep 2009;124 Suppl 2:24-30. doi: 10.1177/00333549091240S205.  Back to cited text no. 3
    
4.
Blas MM, Canchihuaman FA, Alva IE, Hawes SE. Pregnancy outcomes in women infected with Chlamydia trachomatis: A population-based cohort study in Washington State. Sex Transm Infect 2007;83:314-8. doi: 10.1136/sti.2006.022665.  Back to cited text no. 4
    
5.
Li W, Han L, Yu P, Ma C, Wu X, Moore JE, et al. Molecular characterization of skin microbiota between cancer cachexia patients and healthy volunteers. Microb Ecol 2014;67:679-89. doi: 10.1007/s00248-013-0345-6.  Back to cited text no. 5
    
6.
Ganor-Paz Y, Kailer D, Shechter-Maor G, Regev R, Fejgin MD, Biron-Shental T, et al. Obstetric and neonatal outcomes after preterm premature rupture of membranes among women carrying group B streptococcus. Int J Gynaecol Obstet 2015;129:13-6. doi: 10.1016/j.ijgo.2014.10.024.  Back to cited text no. 6
    
7.
Roberts CL, Rickard K, Kotsiou G, Morris JM. Treatment of asymptomatic vaginal candidiasis in pregnancy to prevent preterm birth: An open-label pilot randomized controlled trial. BMC Pregnancy Childbirth 2011;11:18. doi: 10.1186/1471-2393-11-18.  Back to cited text no. 7
    
8.
Mercer BM. Preterm premature rupture of the membranes: Diagnosis and management. Clin Perinatol 2004;31:765-82, vi. doi: 10.1016/j.clp.2004.06.004.  Back to cited text no. 8
    
9.
Xing X, Wenli G. Obsterics and Gynecology. 8th ed. Beijing: People's Health Press; 2013. p. 133-4.  Back to cited text no. 9
    
10.
Sweeney EL, Kallapur SG, Gisslen T, Lambers DS, Chougnet CA, Stephenson SA, et al. Placental infection with Ureaplasma species is associated with histologic chorioamnionitis and adverse outcomes in moderately preterm and late-preterm infants. J Infect Dis 2016;213:1340-7. doi: 10.1093/infdis/jiv587.  Back to cited text no. 10
    
11.
Lorthe E, Quere M, Kayem G. Prolonged latency after preterm premature rupture of membranes: An independent risk factor for neonatal sepsis? Am J Obstet Gynecol 2017;216:84. doi: 10.1016/j.ajog.2016.08.022.  Back to cited text no. 11
    
12.
Nakubulwa S, Kaye DK, Bwanga F, Tumwesigye NM, Mirembe FM. Genital infections and risk of premature rupture of membranes in Mulago Hospital, Uganda: A case control study. BMC Res Notes 2015;8:573. doi: 10.1186/s13104-015-1545-6.  Back to cited text no. 12
    
13.
Qin L, Li XX, Zhang LX, Zhang LL, Xi FY, Yan L, et al. Preterm premature rupture of membranes vaginal abnormal effects on maternal and infant outcomes (in Chinese). Shaanxi Med J 2013;42:1220-1. doi: 10.3969/j.issn.1000-7377.2013.09.051.  Back to cited text no. 13
    
14.
French JI, McGregor JA, Draper D, Parker R, McFee J. Gestational bleeding, bacterial vaginosis, and common reproductive tract infections: Risk for preterm birth and benefit of treatment. Obstet Gynecol 1999;93:715-24. doi: 10.1016/S0029-7844(98)00557-2.  Back to cited text no. 14
    
15.
Dadkhah F, Kashanian M, Eliasi G. A comparison between the pregnancy outcome in women both with or without threatened abortion. Early Hum Dev 2010;86:193-6. doi: 10.1016/j.earlhumdev.2010.02.005.  Back to cited text no. 15
    
16.
Palacio M, Kühnert M, Berger R, Larios CL, Marcellin L. Meta-analysis of studies on biochemical marker tests for the diagnosis of premature rupture of membranes: Comparison of performance indexes. BMC Pregnancy Childbirth 2014;14:183. doi: 10.1186/1471-2393-14-183.  Back to cited text no. 16
    
17.
Lorthe E, Ancel PY, Torchin H, Kaminski M, Langer B, Subtil D, et al. Impact of latency duration on the prognosis of preterm infants after preterm premature rupture of membranes at 24 to 32 weeks' gestation: A National population-based cohort study. J Pediatr 2017;182:47-52.e2. doi: 10.1016/j.jpeds.2016.11.07.  Back to cited text no. 17
    
18.
Surve MV, Anil A, Kamath KG, Bhutda S, Sthanam LK, Pradhan A, et al. Membrane vesicles of group B streptococcus disrupt feto-maternal barrier leading to preterm birth. PLoS Pathog 2016;12:e1005816. doi: 10.1371/journal.ppat.1005816.  Back to cited text no. 18
    
19.
Cordeiro CN, Althaus J, Burke A, Argani C. Herpes simplex virus cervicitis mimicking preterm premature rupture of membranes. Obstet Gynecol 2015;126:378-80. doi: 10.1097/AOG.0000000000000700.  Back to cited text no. 19
    
20.
Furman B, Shoham-Vardi I, Bashiri A, Erez O, Mazor M. Clinical significance and outcome of preterm prelabor rupture of membranes: Population-based study. Eur J Obstet Gynecol Reprod Biol 2000;92:209-16. doi: 10.1016/S0301-2115(99)00257-2.  Back to cited text no. 20
    
21.
van der Ham DP, van Kuijk S, Opmeer BC, Willekes C, van Beek JJ, Mulder AL, et al. Can neonatal sepsis be predicted in late preterm premature rupture of membranes? Development of a prediction model. Eur J Obstet Gynecol Reprod Biol 2014;176:90-5. doi: 10.1016/j.ejogrb.2014.02.003.  Back to cited text no. 21
    
22.
Waters TP, Mercer B. Preterm PROM: Prediction, prevention, principles. Clin Obstet Gynecol 2011;54:307-12. doi: 10.1097/GRF.0b013e318217d4d3.  Back to cited text no. 22
    
23.
Alger LS, Lovchik JC, Hebel JR, Blackmon LR, Crenshaw MC. The association of Chlamydia trachomatis, Neisseria gonorrhoeae, and group B streptococci with preterm rupture of the membranes and pregnancy outcome. Am J Obstet Gynecol 1988;159:397-404. doi: 10.1016/S0002-9378(88)80093-0.  Back to cited text no. 23
    
24.
Yan SF, Liu XY, Cheng YF, Li ZY, Ou J, Wang W, et al. Relationship between intrauterine bacterial infection and early embryonic developmental arrest. Chin Med J 2016;129:1455-8. doi: 10.4103/0366-6999.183411.  Back to cited text no. 24
[PUBMED]  [Full text]  
25.
Eleje GU, Adinma JI, Ugwuanyi DC, Ikechebelu JI, Okafor CI, Ezeama CO, et al. Genital tract microbial isolate in women with preterm pre-labour rupture of membranes in resource-constrained community setting. J Obstet Gynaecol 2015;35:465-8. doi: 10.3109/01443615.2014.970145.  Back to cited text no. 25
    
26.
Mikamo H, Sato Y, Hayasaki Y, Kawazoe K, Hua YX, Tamaya T, et al. Bacterial isolates from patients with preterm labor with and without preterm rupture of the fetal membranes. Infect Dis Obstet Gynecol 1999;7:190-4. doi: 10.1155/S1064744999000320.  Back to cited text no. 26
    
27.
Dechen TC, Sumit K, Ranabir P. Correlates of vaginal colonization with group B streptococci among pregnant women. J Glob Infect Dis 2010;2:236-41. doi: 10.4103/0974-777X.68536.  Back to cited text no. 27
    
28.
Ye F, Chen ZH, Chen J, Liu F, Zhang Y, Fan QY, et al. Chi-squared automatic interaction detection decision tree analysis of risk factors for infant anemia in Beijing, China. Chin Med J 2016;129:1193-9. doi: 10.4103/0366-6999.181955.  Back to cited text no. 28
[PUBMED]  [Full text]  



 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4], [Table 5], [Table 6], [Table 7], [Table 8]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
Methods
Results
Discussion
References
Article Tables

 Article Access Statistics
    Viewed31    
    Printed0    
    Emailed0    
    PDF Downloaded16    
    Comments [Add]    

Recommend this journal




京ICP备05052599号