Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
5 years IF: 1.036 (® Thomson Reuters)
IF 2016: 1.064 (® Thomson Reuters)
Total Cites: 7140
Follow Us
Follow Us
  • Users Online: 1900
  • Home
  • Print this page
  • Email this page

 Table of Contents  
META ANALYSIS
Year : 2017  |  Volume : 130  |  Issue : 18  |  Page : 2241-2250

High Spicy Food Intake and Risk of Cancer: A Meta-analysis of Case–control Studies


1 Cancer Foundation of China, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
2 National Office for Cancer Prevention and Control, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
3 Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02912, USA
4 Office for Cancer Prevention and Control, Chongqing Cancer Hospital, Chongqing 400030, China

Date of Submission04-May-2017
Date of Web Publication05-Sep-2017

Correspondence Address:
Ping Zhao
Cancer Foundation of China, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0366-6999.213968

Rights and Permissions
  Abstract 


Background: Studies on the association between spicy food intake and cancer risk have reported inconsistent results. We quantitatively assessed this association by conducting a meta-analysis based on evidence from case–control studies.
Methods: PubMed, EMBASE, and the Cochrane Library were searched for eligible publications. Combined odds ratios (OR s) with their 95% confidence interval (CI) were calculated using a random- or fixed-effects model. The methodological quality of the included articles was assessed using the Newcastle–Ottawa scale (NOS). All data were analyzed using STATA 11.0 software (version 11.0; StataCorp., College Station, TX, USA). Subgroup analyses were also performed with stratification by region, sex, number of cases, cancer subtype, source of the control group, and NOS score.
Results: A total 39 studies from 28 articles fulfilled the inclusion criteria for the meta-analysis (7884 patients with cancer and 10,142 controls). Comparison of the highest versus lowest exposure category in each study revealed a significant OR of 1.76 (95% CI = 1.35–2.29) in spite of significant heterogeneity (P < 0.001). In the subgroup analyses, this positive correlation was still found for gastric cancer, different regions, different numbers of cases, different sources of the control group, and high-quality articles (NOS score of ≥ 7). However, no statistically significant association was observed for women, esophageal cancer, gallbladder cancer, or low-quality articles (NOS score of <7). No evidence of publication bias was found.
Conclusions: Evidence from case–control studies suggested that a higher level of spicy food intake may be associated with an increased incidence of cancer despite significant heterogeneity. More studies are warranted to clarify our understanding of the association between high spicy food intake and the risk of cancer.

Keywords: Cancer Incidence; Case–control Studies; Meta-analysis; Spicy Food


How to cite this article:
Chen YH, Zou XN, Zheng TZ, Zhou Q, Qiu H, Chen YL, He M, Du J, Lei HK, Zhao P. High Spicy Food Intake and Risk of Cancer: A Meta-analysis of Case–control Studies. Chin Med J 2017;130:2241-50

How to cite this URL:
Chen YH, Zou XN, Zheng TZ, Zhou Q, Qiu H, Chen YL, He M, Du J, Lei HK, Zhao P. High Spicy Food Intake and Risk of Cancer: A Meta-analysis of Case–control Studies. Chin Med J [serial online] 2017 [cited 2017 Sep 21];130:2241-50. Available from: http://www.cmj.org/text.asp?2017/130/18/2241/213968




  Introduction Top


Cancer is a major health problem worldwide and the leading cause of death in both more and less economically developed countries.[1],[2] Based on GLOBOCAN estimates, about 14.1 million new cancer cases and 8.2 million cancer-related deaths occurred in 2012 worldwide.[3] Although many risk factors contribute to the development of cancer, including genetic variants,[4],[5] obesity,[6] smoking,[7] poor diet,[8] physical inactivity,[9] and reproductive factors[10] (including lower parity and higher age at first birth), such risk factors account for only a small proportion of cancer cases. Thus, other unknown risk factors still need to be identified.

Capsaicin (trans-8-metil-vanillyl-6-nonenamida) is the main pungent active substance of spicy foods such as chili, pepper, and kimchi. Consumed worldwide, capsaicin has a long and controversial history with respect to whether its consumption or topical application is entirely safe.[11] Conflicting epidemiologic data and basic research study results suggest that capsaicin can act as a carcinogen, cancer preventive agent,[12],[13] or tumor promoter,[14],[15] while other data suggest that it has chemopreventive and chemotherapeutic properties.[16],[17] Several animal studies have been conducted to identify the association between capsaicin and cancer risk. Researchers have found that approximately 60% of rats fed a semisynthetic diet containing 10% chilies developed neoplastic changes in the liver.[18] In another experiment, mice fed a ≤0.25% capsaicinoid mixture in the diet for 79 weeks showed no evidence of carcinogenicity.[19] In human studies, researchers from Korea proposed that capsaicin alters the metabolism of chemical carcinogens and might promote carcinogenesis at high doses.[20] Mahfouz et al. and Wu et al.[21],[22] reported positive relationship between spicy food and the risk of digestive tract cancer, whereas other studies showed no such relationship.[23] In addition, in four case–control studies, researchers found negative relationships between spicy food intake and cancer risk.[24],[25],[26],[27] To address these discrepancies, we performed a meta-analysis of the association between the consumption of spicy food and cancer risk.


  Methods Top


Search strategy

Two of the authors (Yu-Heng Chen and Xiao-Nong Zou) independently performed a systematic search of published articles using the PubMed, EMBASE, and Cochrane Library databases up to June 2017. We used the following search terms: “spicy or chili or chilli or pepper or capsaicin” and “cancer or carcinoma.” We also reviewed the reference lists from the retrieved articles and those from previous review studies to identify additional relevant studies that may not have been identified by our database searches.

Inclusion and exclusion criteria

The inclusion criteria were (1) original articles, (2) case–control studies, (3) inclusion of odds ratio (OR) estimates with the corresponding 95% confidence interval (CI) for the association between spicy food intake and cancer, (4) publication in English, and (5) inclusion of at least two comparison groups. For duplicate publications, we only included the one with the most detailed and latest information for both the exposure and outcome. The exclusion criteria were (1) reviews, reports, clinical trials, and genetic and cell studies and (2) insufficient data.

Data extraction

Two reviewers independently extracted the relevant information from the identified studies, and disagreements were discussed and resolved by consensus. The following information was collected from each eligible study: first author's surname, publication year, country, study period, sex, exposure, numbers of cases and controls, types of cancer, comparison of exposure level (highest versus lowest), multivariate-adjusted OR with corresponding 95% CI for the highest and lowest categories of spicy food intake, and covariates adjusted in the statistical analysis.

Among the 28 articles included in our meta-analysis, 19 articles reported the associations between the two-level of spicy food intake and cancer risk and 9 articles[14],[15],[23],[26],[28],[29],[30],[31],[32] reported the associations between the multi-level of spicy food intake and cancer risk. Therefore, we distinguished two levels of spicy food intake in our study: highest and lowest. The categories of intake levels for spicy food were defined in accordance with the definition in the original articles. The lowest category was defined as the lowest level of spicy food intake (reference group), and in 18 articles, it was defined as low, bland, medium, <75 g·cu−1·month−1, or <1 time/week and so forth, while 10 articles[14],[21],[22],[25],[28],[30],[33],[34],[35],[36] defined as “no” or never. The highest category was defined as the highest level of spicy food intake, and in 21 articles, it was defined as high, hot, ≥2 times/day, or 90–250 mg/d and so forth, while 7 articles[14],[22],[25],[33],[34],[35],[36] defined as “yes.”

Quality assessment of the studies

Two reviewers independently evaluated the quality of the included case–control studies using the Newcastle–Ottawa scale (NOS).[37] Each study was broadly assessed based on selection, comparability, and exposure and was assigned a score ranging from 0 to 9. Studies with a score of ≥7 were considered to be of high quality.

Statistical analysis

We summarized the study-specific OR s and 95% CI s and compared the highest and lowest categories of spicy food intake for each study. Heterogeneity among the studies was estimated using the I2 statistic. Pooled OR s were obtained using either a fixed-effects model (used in the absence of heterogeneity, I2< 50%) or random-effects model (used in the presence of heterogeneity, I2 > 50%).[38]

To explore the potential heterogeneity among studies, we conducted subgroup analyses for population regions (Asian and non-Asian), sex (female and combined male/female), cancer subtypes (gastric cancer, esophageal cancer, gallbladder cancer, and other cancers), number of cases (≥200 and <200), source of the control group (community-based and hospital-based), NOS score (≥7 and <7), and the definition of spicy food (chili pepper and all spicy food).

We visually inspected the funnel plot symmetry and performed the Begg regression test and Egger linear regression test[39] to assess the potential of publication bias.[40] All statistical analyses were performed with STATA software (version 11.0; StataCorp., College Station, TX, USA). P < 0.05 was considered statistically significant.


  Results Top


Study selection and study characteristics

In this study, we investigated the cancer incidence associated with consumption of spicy food. [Figure 1] outlines the initial search result of a total of 329 citations. After subjecting these citations to a series of exclusions, the meta-analysis included 28 articles.[14],[15],[21],[22],[23],[24],[25],[26],[27],[28],[29],[30],[31],[32],[33],[34],[35],[36],[41],[42],[43],[44],[45],[46],[47],[48],[49],[50] In addition, since 7 articles[25],[28],[35],[43],[46],[48],[50] reported spicy food and cancer risk in different types of cancer, different types of spicy food, and different genders, they were considered as separate studies in the following data analysis. Therefore, a total 28 articles including 39 studies (7884 cases and 10,142 controls) were included in the final meta-analysis.
Figure 1: Flowchart of meta-analysis for exclusion or inclusion of individual articles. OR: Odds ratio; CI: Confidence interval.

Click here to view


The characteristics of the 39 studies are shown in [Table 1]. All 39 studies involved case–control comparisons, including 17 community controls and 22 hospital controls. Twenty-eight studies were conducted among the residents of Asia, and 11 were from non-Asian regions. With respect to the number of cases, 18 studies included ≥200 subjects, and 21 included <200 subjects. In terms of cancer subtypes, 12, 9, 6, and 12 studies reported the association between spicy food and the risk of gastric cancer, esophageal cancer, gallbladder cancer, and other cancers, respectively. The NOS scores of all studies ranged from 5 to 9, and 29 studies had a score of ≥7.
Table 1: Characteristics of studies included in the meta-analysis

Click here to view


Highest versus lowest intake of spicy food

Among the 39 studies included in the meta-analysis, 30 studies reported the associations between spicy food and cancer risk after adjustments and 9 studies[22],[24],[25],[29],[30],[33],[34],[36] did not clarify whether adjustments have been done or not. Therefore, we extracted the adjusted data if possible and the data that was not specified as the crude or the adjusted in the 9 original studies was also extracted and included in the meta-analysis. The OR and 95% CI of each study in terms of the highest versus lowest spicy food intake is shown in [Table 1]. A forest plot of the 39 studies is shown in [Figure 2]. A random-effects model was applied, and it revealed a significantly positive association (OR = 1.76, 95% CI = 1.35–2.29). However, high heterogeneity was found among the studies (I2 = 88.3%, P for heterogeneity <0.001).
Figure 2: Forest plot of association between high spicy food intake and cancer risk.

Click here to view


Subgroup analyses

All spicy food

The categories of spicy food were defined in accordance with the definition in the original articles. In our study, “all spicy food” was defined as including chili pepper, undefined spicy food, spicy snacks, kimchi, spicy preserved meat, capsaicin, pepper-soybean in 39 studies. We conducted subgroup analyses for all spicy food. The highest category of spicy food intake was associated with cancer risk between the two different regions (Asian: OR = 1.66, 95% CI = 1.22–2.27; non-Asian: OR = 2.07, 95% CI = 1.25–3.43), numbers of cases (≥200: OR = 2.15, 95% CI = 1.45–3.18;<200: OR = 1.46, 95% CI = 1.03–2.08), and sources of the control group (community based: OR = 1.91, 95% CI = 1.19–3.07; hospital based: OR = 1.65, 95% CI = 1.20–2.29). We also found this positive association for gastric cancer (OR = 2.16, 95% CI = 1.26–3.71) and in high-quality studies (OR = 1.87, 95% CI = 1.40–2.48). There was no significant association between the highest category of spicy food intake and cancer in women (OR = 1.93, 95% CI = 0.72–5.23), esophageal cancer (OR = 1.43, 95% CI = 0.92–2.22), gallbladder cancer (OR = 1.78, 95% CI = 0.83–3.83), or low-quality studies (OR = 1.48, 95% CI = 0.74–2.97).

Chili pepper

The association between chili pepper consumption and the incidence of cancer was evaluated in 23 studies, which directly assessed chili peppers as a food item. Chili pepper included peppers, Hungarian sweet/hot pepper, red/green/undefined chili pepper, and chili/chillies. As shown in [Table 2], chili pepper consumption showed a consistently positive association with both regions, case numbers of >200, esophageal cancer, community-based studies, and high-quality studies. However, no statistically significant association was observed between the highest category of spicy food consumption and cancer risk among women, a case number of <200, gastric cancer, gallbladder cancer, other cancer types, hospital-based studies, or low-quality articles.
Table 2: Subgroup analyses of association between high spicy food intake and cancer risk

Click here to view


Sensitivity analysis and publication bias

Sensitivity analyses were conducted to evaluate the effect of excluding any individual study. The pooled OR was not altered by exclusion of one study at a time in turn (data not shown). No publication bias was detected for spicy food (Egger's test: P = 0.714; Begg's test: P = 0.942) in the selected studies. The funnel plot was symmetrical [Figure 3].
Figure 3: Funnel plot of studies evaluating the association between high spicy food intake and cancer risk. Dotted lines indicate 95% pseudo-confidence interval. SE: Standard error; OR: Odds ratio. Egger's test (P = 0.714) Begg's test (P = 0.942).

Click here to view



  Discussion Top


To the best of our knowledge, the current study represents the most comprehensive and up-to-date meta-analysis (39 case–control studies) of the association between high spicy food intake and cancer risk. The results showed that a high level of spicy food intake was significantly associated with cancer risk, and the association was consistent in most subgroup analyses. We found no association in women, esophageal cancer, or gallbladder cancer because of the limited numbers of such studies. Interestingly, in terms of cancer subtypes, high spicy food intake was only found to be associated with gastric cancer. We also assessed chili pepper as a food item to identify the association between chili pepper consumption and cancer risk. Consistent associations were found in different regions, case numbers of >200, esophageal cancer, community-based studies, and high-quality articles.

Several possible underlying mechanisms may link the consumption of spicy food and the incidence of cancer. Capsaicin is a primary pungent and irritating agent found in chilies and red peppers, which are widely used as spices in many cultures worldwide.[16] Several animal studies have shown a carcinogenic dose–effect relationship. For example, chili extract has been shown to promote the development of stomach and liver tumors in BALB/c mice initiated by methyl (acetoxymethyl) nitrosamine and benzene hexachloride. Capsaicin also has a cocarcinogenic effect on TPA-promoted skin carcinogenesis in vivo; this is mediated through the transient receptor potential vanilloid subfamily number 1 and the tyrosine kinase epidermal growth factor receptor. In the present meta-analysis, 19 studies indicated that high-level consumption of capsaicin-containing foods was associated with an increased risk of cancer. We believe that these results are credible because the pooled OR s from 39 articles and subgroup analyses indicated a significantly positive association between high spicy food intake and cancer risk.

In past decades, the anticancer activity of capsaicin has been broadly investigated for a variety of cancer types. Briefly, the anticancer mechanisms of capsaicin include activation of apoptosis,[51] cell growth arrest,[52] and inhibition of angiogenesis[53] and metastasis.[54] Capsaicin stimulates the anti-tumorigenic/tumor-suppressive signaling pathway and related transcription factors, whereas it inhibits oncogenic signaling pathways and tumor promoters. In addition, capsaicin synergistically interacts with other cancer-preventive agents, providing the possibility for the use of capsaicin in cancer therapy with other chemotherapeutic agents.[55] In the population-based prospective cohort study in China by Lv et al.,[56] compared with those who ate spicy food less than once a week, those who consumed spicy food almost every day had a 14% lower risk of death, and inverse association was also observed for deaths due to cancer. Among the 39 studies included in our meta-analysis, 4 studies reported a negative association; however, when we summarized the estimate of high spicy food intake and cancer risk, this negative association was no longer present. These intrinsic differences in different populations and different research emphases may partly explain the above controversies.

Our meta-analysis has several limitations. First, because the data were obtained from case–control studies, confounding bias may be present, such as selection bias and recall bias due to the contribution of different results obtained from different populations or hospital designs. Although we attempted to include adjusted estimates from multivariate models from each contributing study and apply a stratified analysis, we still cannot explain the potential effects of other dietary habits or behavior or the etiologic relationship between spicy food intake and cancer events. Second, the definition of spicy food and the highest and lowest categories of spicy food intake were inconsistent. People of different races and dietary cultures have eating preferences, such as kimchi in Korea or spicy preserved meat in the Maghreb. Third, 9 studies did not adjust for confounding factors, confounders that were adjusted for in each study were different, and there were some unknown confounders. Fourth, relatively low sample sizes were included in the subgroup analyses by sex, region, and cancer subtype, which may have rendered chance effects more likely. In addition, only 7 articles (including 11 studies) with subgroup analyses conducted in non-Asian regions were included in our meta-analysis. The small sample size may have contributed to the heterogeneity.

In conclusion, our meta-analysis suggests a positive association between a high level of spicy food or chili pepper intake and cancer risk. Furthermore, no statistically significant effect was observed among females after application of a stratified analysis by sex because of the limited number of studies. Studies with larger sample sizes, longer follow-up periods, more cancer types, and more detailed measures of spicy food intake are necessary to confirm these results.

Financial support and sponsorship

This study was supported by the International Science and Technology Cooperation Program of China (No. 2010DFB34180).

Conflicts of interest

There are no conflicts of interest.



 
  References Top

1.
Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin 2016;66:115-32. doi: 10.3322/caac.21338.  Back to cited text no. 1
[PUBMED]    
2.
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016;66:7-30. doi: 10.3322/caac.21332.  Back to cited text no. 2
[PUBMED]    
3.
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A, et al. Global cancer statistics, 2012. CA Cancer J Clin 2015;65:87-108. doi: 10.3322/caac.21262.  Back to cited text no. 3
    
4.
Liu X, Zhang X, Wang Z, Chang J, Wu Z, Zhang Z, et al. Genetic polymorphism of the phospholipase C epsilon 1 gene and risk of gastric cancer. Chin Med J (Engl) 2014;127:2511-7. doi: 10.3760/cma.j.issn.0366-6999.20133123.  Back to cited text no. 4
    
5.
Zhang BB, Wang DG, Xuan C, Sun GL, Deng KF. Genetic 135G/C polymorphism of RAD51 gene and risk of cancer: A meta-analysis of 28,956 cases and 28,372 controls. Fam Cancer 2014;13:515-26. doi: 10.1007/s10689-014-9729-0.  Back to cited text no. 5
    
6.
Keum N, Giovannucci E. Association between obesity and postmenopausal breast cancer risk: Modification by hormone therapy use. JAMA Oncol 2015;1:1170-1. doi: 10.1001/jamaoncol.2015.3299.  Back to cited text no. 6
    
7.
Fasanelli F, Baglietto L, Ponzi E, Guida F, Campanella G, Johansson M, et al. Hypomethylation of smoking-related genes is associated with future lung cancer in four prospective cohorts. Nat Commun 2015;6:10192. doi: 10.1038/ncomms10192.  Back to cited text no. 7
    
8.
Canchola AJ, Lacey JV Jr., Bernstein L, Horn-Ross PL. Dietary patterns and endometrial cancer risk in the California teachers study cohort. Cancer Causes Control 2015;26:627-34. doi: 10.1007/s10552-015-0552-1.  Back to cited text no. 8
    
9.
Ekenga CC, Parks CG, Sandler DP. A prospective study of occupational physical activity and breast cancer risk. Cancer Causes Control 2015;26:1779-89. doi: 10.1007/s10552-015-0671-8.  Back to cited text no. 9
    
10.
Palmer JR, Viscidi E, Troester MA, Hong CC, Schedin P, Bethea TN, et al. Parity, lactation, and breast cancer subtypes in African American women: Results from the AMBER consortium. J Natl Cancer Inst 2014;106. pii: dju237. doi: 10.1093/jnci/dju237.  Back to cited text no. 10
    
11.
Bode AM, Dong Z. The two faces of capsaicin. Cancer Res 2011;71:2809-14. doi: 10.1158/0008-5472.CAN-10-3756.  Back to cited text no. 11
    
12.
López-Carrillo L, Camargo MC, Schneider BG, Sicinschi LA, Hernández-Ramírez RU, Correa P, et al. Capsaicin consumption, helicobacter pylori CagA status and IL1B-31C>T genotypes: A host and environment interaction in gastric cancer. Food Chem Toxicol 2012;50:2118-22. doi: 10.1016/j.fct.2012.02.043.  Back to cited text no. 12
    
13.
Pabalan N, Jarjanazi H, Ozcelik H. The impact of capsaicin intake on risk of developing gastric cancers: A meta-analysis. J Gastrointest Cancer 2014;45:334-41. doi: 10.1007/s12029-014-9610-2.  Back to cited text no. 13
    
14.
López-Carrillo L, Hernández Avila M, Dubrow R. Chili pepper consumption and gastric cancer in Mexico: A case-control study. Am J Epidemiol 1994;139:263-71. doi: 10.1093/oxfordjournals.aje.a116993.  Back to cited text no. 14
    
15.
Mathew A, Gangadharan P, Varghese C, Nair MK. Diet and stomach cancer: A case-control study in South India. Eur J Cancer Prev 2000;9:89-97. doi: 10.1097/00008469-200004000-00004.  Back to cited text no. 15
    
16.
Surh YJ, Lee SS. Capsaicin, a double-edged sword: Toxicity, metabolism, and chemopreventive potential. Life Sci 1995;56:1845-55. doi: 10.1016/0024-3205(95)00159-4.  Back to cited text no. 16
    
17.
Buiatti E, Palli D, Decarli A, Amadori D, Avellini C, Bianchi S, et al. Acase-control study of gastric cancer and diet in Italy. Int J Cancer 1989;44:611-6. doi: 10.1002/ijc.2910440409.  Back to cited text no. 17
    
18.
Hoch-Ligeti C. Production of liver tumours by dietary means; effect of feeding chilies [Capsicum frutescen s and annuum (Linn.)] to rats. Acta Unio Int Contra Cancrum 1951;7:606-11.  Back to cited text no. 18
    
19.
Akagi A, Sano N, Uehara H, Minami T, Otsuka H, Izumi K, et al. Non-carcinogenicity of capsaicinoids in B6C3F1 mice. Food Chem Toxicol 1998;36:1065-71. doi: 10.1016/s0278-6915(98)00077-5.  Back to cited text no. 19
    
20.
Lee BM, Park KK. Beneficial and adverse effects of chemopreventive agents. Mutat Res 2003;523-524:265-78. doi: 10.1016/s0027-5107(02)00342-1.  Back to cited text no. 20
    
21.
Mahfouz EM, Sadek RR, Abdel-Latief WM, Mosallem FA, Hassan EE. The role of dietary and lifestyle factors in the development of colorectal cancer: Case control study in Minia, Egypt. Cent Eur J Public Health 2014;22:215-22. doi: 10.21101/cejph.a3919.  Back to cited text no. 21
    
22.
Wu Y, Fan Y, Jiang Y, Wang Y, Liu H, Wei M, et al. Analysis of risk factors associated with precancerous lesion of gastric cancer in patients from Eastern China: A comparative study. J Cancer Res Ther 2013;9:205-9. doi: 10.4103/0973-1482.113351.  Back to cited text no. 22
    
23.
López-Carrillo L, López-Cervantes M, Robles-Díaz G, Ramírez-Espitia A, Mohar-Betancourt A, Meneses-García A, et al. Capsaicin consumption, helicobacter pylori positivity and gastric cancer in Mexico. Int J Cancer 2003;106:277-82. doi: 10.1002/ijc.11195.  Back to cited text no. 23
    
24.
Goh KL, Cheah PL, Md N, Quek KF, Parasakthi N. Ethnicity and H. pylori as risk factors for gastric cancer in Malaysia: A prospective case control study. Am J Gastroenterol 2007;102:40-5. doi: 10.1111/j.1572-0241.2006.00885.x.  Back to cited text no. 24
    
25.
Pandey M, Shukla VK. Diet and gallbladder cancer: A case-control study. Eur J Cancer Prev 2002;11:365-8. doi: 10.1097/00008469-200208000-00008.  Back to cited text no. 25
    
26.
Do MH, Lee SS, Kim JY, Jung PJ, Lee MH. Fruits, vegetables, soy foods and breast cancer in pre- and postmenopausal Korean women: A case-control study. Int J Vitam Nutr Res 2007;77:130-41. doi: 10.1024/0300-9831.77.2.130.  Back to cited text no. 26
    
27.
Shen M, Chapman RS, He X, Liu LZ, Lai H, Chen W, et al. Dietary factors, food contamination and lung cancer risk in Xuanwei, China. Lung Cancer 2008;61:275-82. doi: 10.1016/j.lungcan.2007.12.024.  Back to cited text no. 27
    
28.
Ibiebele TI, Taylor AR, Whiteman DC, van der Pols JC, Australian Cancer Study. Eating habits and risk of esophageal cancers: A population-based case-control study. Cancer Causes Control 2010;21:1475-84. doi: 10.1007/s10552-010-9576-8.  Back to cited text no. 28
    
29.
Joshi SC, Saxena SR, Satyawali VN, Joshi A, Nigam P, Singh VK, et al. Oesophageal carcinoma – A study of risk factors (emphasis on nutrition) in a teaching hospital of Kumaon region of Uttarakhand. J Assoc Physicians India 2009;57:631-5.  Back to cited text no. 29
    
30.
Petro-Nustas W. Health-related behaviors and lifestyle factors of patients with breast cancer. Cancer Nurs 2002;25:219-29. doi: 10.1097/00002820-200206000-00009.  Back to cited text no. 30
    
31.
Phukan RK, Chetia CK, Ali MS, Mahanta J. Role of dietary habits in the development of esophageal cancer in Assam, the north-eastern region of India. Nutr Cancer 2001;39:204-9. doi: 10.1207/S15327914nc392_7.  Back to cited text no. 31
    
32.
Lee JK, Park BJ, Yoo KY, Ahn YO. Dietary factors and stomach cancer: A case-control study in Korea. Int J Epidemiol 1995;24:33-41. doi: 10.1093/ije/24.1.33.  Back to cited text no. 32
    
33.
Al-Qadasi FA, Shah SA, Ghazi HF. Tobacco chewing and risk of gastric cancer: A case-control study in Yemen. East Mediterr Health J 2017;22:719-26.  Back to cited text no. 33
    
34.
Zhivotovskiy AS, Kutikhin AG, Azanov AZ, Yuzhalin AE, Magarill YA, Brusina EB, et al. Colorectal cancer risk factors among the population of South-East Siberia: A case-control study. Asian Pac J Cancer Prev 2012;13:5183-8. doi: 10.7314/APJCP.2012.13.10.5183.  Back to cited text no. 34
    
35.
Nakadaira H, Lang I, Szentirmay Z, Hitre E, Kaster M, Yamamoto M, et al. Acase-control study of gallbladder cancer in Hungary. Asian Pac J Cancer Prev 2009;10:833-6.  Back to cited text no. 35
    
36.
Kapil U, Singh P, Bahadur S, Dwivedi SN, Singh R, Shukla N, et al. Assessment of risk factors in laryngeal cancer in India: A case-control study. Asian Pac J Cancer Prev 2005;6:202-7.  Back to cited text no. 36
    
37.
Stang A. Critical evaluation of the newcastle-ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 2010;25:603-5. doi: 10.1007/s10654-010-9491-z.  Back to cited text no. 37
    
38.
Higgins JP, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A Stat Soc 2009;172:137-59. doi: 10.1111/j.1467-985X.2008.00552.x.  Back to cited text no. 38
    
39.
Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315:629-34. doi: 10.1136/bmj.315.7109.62.  Back to cited text no. 39
    
40.
Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994;50:1088-101. doi: 10.2307/2533446.  Back to cited text no. 40
    
41.
Zhang YW, Eom SY, Kim YD, Song YJ, Yun HY, Park JS, et al. Effects of dietary factors and the NAT2 acetylator status on gastric cancer in Koreans. Int J Cancer 2009;125:139-45. doi: 10.1002/ijc.24328.  Back to cited text no. 41
    
42.
Feng BJ, Jalbout M, Ayoub WB, Khyatti M, Dahmoul S, Ayad M, et al. Dietary risk factors for nasopharyngeal carcinoma in Maghrebian countries. Int J Cancer 2007;121:1550-5. doi: 10.1002/ijc.22813.  Back to cited text no. 42
    
43.
Wang JM, Xu B, Rao JY, Shen HB, Xue HC, Jiang QW, et al. Diet habits, alcohol drinking, tobacco smoking, green tea drinking, and the risk of esophageal squamous cell carcinoma in the Chinese population. Eur J Gastroenterol Hepatol 2007;19:171-6. doi: 10.1097/MEG.0b013e32800ff77a.  Back to cited text no. 43
    
44.
Hung HC, Huang MC, Lee JM, Wu DC, Hsu HK, Wu MT, et al. Association between diet and esophageal cancer in Taiwan. J Gastroenterol Hepatol 2004;19:632-7. doi: 10.1111/j.1440-1746.2004.03346.x.  Back to cited text no. 44
    
45.
Lee SA, Kang D, Shim KN, Choe JW, Hong WS, Choi H, et al. Effect of diet and helicobacter pylori infection to the risk of early gastric cancer. J Epidemiol 2003;13:162-8. doi: 10.2188/jea.13.162.  Back to cited text no. 45
    
46.
Serra I, Yamamoto M, Calvo A, Cavada G, Báez S, Endoh K, et al. Association of chili pepper consumption, low socioeconomic status and longstanding gallstones with gallbladder cancer in a Chilean population. Int J Cancer 2002;102:407-11. doi: 10.1002/ijc.10716.  Back to cited text no. 46
    
47.
Kim HJ, Chang WK, Kim MK, Lee SS, Choi BY. Dietary factors and gastric cancer in Korea: A case-control study. Int J Cancer 2002;97:531-5. doi: 10.1002/ijc.10111.  Back to cited text no. 47
    
48.
Notani PN, Jayant K. Role of diet in upper aerodigestive tract cancers. Nutr Cancer 1987;10:103-13. doi: 10.1080/01635588709513945.  Back to cited text no. 48
    
49.
Gajalakshmi CK, Shanta V. Lifestyle and risk of stomach cancer: A hospital-based case-control study. Int J Epidemiol 1996;25:1146-53. doi: 10.1093/ije/25.6.1146.  Back to cited text no. 49
    
50.
Tajima K, Tominaga S. Dietary habits and gastro-intestinal cancers: A comparative case-control study of stomach and large intestinal cancers in Nagoya, Japan. Jpn J Cancer Res 1985;76:705-16.  Back to cited text no. 50
    
51.
Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011;144:646-74. doi: 10.1016/j.cell.2011.02.013.  Back to cited text no. 51
    
52.
Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature 2004;432:316-23. doi: 10.1038/nature03097.  Back to cited text no. 52
    
53.
Chakraborty S, Adhikary A, Mazumdar M, Mukherjee S, Bhattacharjee P, Guha D, et al. Capsaicin-induced activation of p53-SMAR1 auto-regulatory loop down-regulates VEGF in non-small cell lung cancer to restrain angiogenesis. PLoS One 2014;9:e99743. doi: 10.1371/journal.pone.0099743.  Back to cited text no. 53
    
54.
Talmadge JE, Fidler IJ. AACR centennial series: The biology of cancer metastasis: Historical perspective. Cancer Res 2010;70:5649-69. doi: 10.1158/0008-5472.CAN-10-1040.  Back to cited text no. 54
    
55.
Clark R, Lee SH. Anticancer properties of capsaicin against human cancer. Anticancer Res 2016;36:837-43.  Back to cited text no. 55
    
56.
Lv J, Qi L, Yu C, Yang L, Guo Y, Chen Y, et al. Consumption of spicy foods and total and cause specific mortality: Population based cohort study. BMJ 2015;351:h3942. doi: 10.1136/bmj.h3942.  Back to cited text no. 56
    


    Figures

  [Figure 1], [Figure 2], [Figure 3]
 
 
    Tables

  [Table 1], [Table 2]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
Methods
Results
Discussion
References
Article Figures
Article Tables

 Article Access Statistics
    Viewed148    
    Printed0    
    Emailed0    
    PDF Downloaded50    
    Comments [Add]    

Recommend this journal




京ICP备05052599号