Home About us Editorial board Ahead of print Current issue Search Archives Instructions Contacts Login 
5 years IF: 1.036 (® Thomson Reuters)
IF 2016: 1.064 (® Thomson Reuters)
Total Cites: 7140
Follow Us
Follow Us
  • Users Online: 1198
  • Home
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2017  |  Volume : 130  |  Issue : 16  |  Page : 1961-1967

Label-free Detection for a DNA Methylation Assay Using Raman Spectroscopy


1 Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Korea
2 Department of Pharmacology, College of Medicine, Kyung Hee University, Seoul 02447, Korea
3 Department of Pulmonary and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Korea
4 Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447; Department of Medical Engineering, Graduate School, Kyung Hee University, Seoul 02447, Korea

Correspondence Address:
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0366-6999.211874

Rights and Permissions

Background: DNA methylation has been suggested as a biomarker for early cancer detection and treatment. Varieties of technologies for detecting DNA methylation have been developed, but they are not sufficiently sensitive for use in diagnostic devices. The aim of this study was to determine the suitability of Raman spectroscopy for label-free detection of methylated DNA. Methods: The methylated promoter regions of cancer-related genes cadherin 1 (CDH1) and retinoic acid receptor beta (RARB) served as target DNA sequences. Based on bisulfite conversion, oligonucleotides of methylated or nonmethylated probes and targets were synthesized for the DNA methylation assay. Principal component analysis with linear discriminant analysis (PCA-DA) was used to discriminate the hybridization between probes and targets (methylated probe and methylated target or nonmethylated probe and nonmethylated target) of CDH1 and RARB from nonhybridization between the probe and targets (methylated probe and nonmethylated target or nonmethylated probe and methylated target). Results: This study revealed that the CDH1 and RARB oligo sets and their hybridization data could be classified using PCA-DA. The classification results for CDH1 methylated probe + CDH1 methylated target versus CDH1 methylated probe + CDH1 unmethylated target showed sensitivity, specificity, and error rates of 92%, 100%, and 8%, respectively. The classification results for the RARB methylated probe + RARB methylated target versus RARB methylated probe + RARB unmethylated target showed sensitivity, specificity, and error rates of 92%, 93%, and 11%, respectively. Conclusions: Label-free detection of DNA methylation could be achieved using Raman spectroscopy with discriminant analysis.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed235    
    Printed2    
    Emailed0    
    PDF Downloaded52    
    Comments [Add]    

Recommend this journal

 

京ICP备05052599号